题目内容
如图,直线
与椭圆
交于
两点,记
的面积为
.
(I)求在
,
的条件下,
的最大值;
(II)当
,
时,求直线
的方程.
21(Ⅰ)解:设点
的坐标为
,点
的坐标为
,……1分
由
,解得
,……3分
所以![]()
![]()
.…5分
当且仅当
时,
取到最大值
.…6分
(Ⅱ)解:由
……7分
得
,
,①……8分
![]()
.② …9分
设
到
的距离为
,则
,又因为
,
所以
,……10分
代入②式并整理,得
,解得
,
,代入①式检验,
,
故直线
的方程是
或
或
,或
.……14分(一条直线1分)
练习册系列答案
相关题目