题目内容
15.平面内给定三个向量$\overrightarrow a=({3,2}),\overrightarrow b=({-1,2}),\overrightarrow c=({4,1})$(1)求满足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的实数m、n;
(2)设$\overrightarrow d=({x,y})$满足$({\overrightarrow d-\overrightarrow c})∥({\overrightarrow a+\overrightarrow b})$且$|{\overrightarrow d-\overrightarrow c}|=1$,求$\overrightarrow d$.
分析 (1)根据向量相等与坐标运算,列出方程组,求出m、n的值;
(2)根据平面向量的坐标运算,结合向量平行与模长的坐标表示,列出方程组,求出结果.
解答 解:(1)∵$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$,
∴(3,2)=m(-1,2)+n(4,1),
即$\left\{\begin{array}{l}-m+4n=3\\ 2m+n=2\end{array}\right.$,
解得$\left\{\begin{array}{l}m=\frac{5}{9}\\ n=\frac{8}{9}.\end{array}\right.$;
(2)∵$\overrightarrow d-\overrightarrow c=({x-4,y-1})$,$\overrightarrow a+\overrightarrow b=({2,4})$,
又$({\overrightarrow d-\overrightarrow c})∥({\overrightarrow a+\overrightarrow b})$,且$|{\overrightarrow d-\overrightarrow c}|=1$,
∴$\left\{\begin{array}{l}4(x-1)-2(y-1)=0\\{(x-4)^2}+{(y-1)^2}=1\end{array}\right.$;
解得$\left\{\begin{array}{l}x=4+\frac{{\sqrt{5}}}{5}\\ y=1+\frac{{2\sqrt{5}}}{5}\end{array}\right.$,或$\left\{\begin{array}{l}x=4-\frac{{\sqrt{5}}}{5}\\ y=1-\frac{{2\sqrt{5}}}{5}\end{array}\right.$;
∴$\overrightarrow d=({\frac{{20+\sqrt{5}}}{5},\frac{{5+2\sqrt{5}}}{5}})$,或$(\frac{{20-\sqrt{5}}}{5},\frac{{5-2\sqrt{5}}}{5})$.
点评 本题考查了平面向量的坐标表示与运算问题,也考查了解方程组的应用问题,是基础题目.
| A. | $\frac{1}{5}$+$\frac{2}{5}$i | B. | $\frac{2}{5}$+$\frac{1}{5}$i | C. | -$\frac{1}{5}$+$\frac{2}{5}$i | D. | -$\frac{2}{5}$+$\frac{1}{5}$i |
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
| A. | $-\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | 0 |