题目内容

7.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)F1,F2是椭圆C的两个焦点,⊙O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆C交于不同的两点A,B,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,求k的值.

分析 (I)由题意长轴长为4求得a的值,离心率e=$\frac{1}{2}$,得出c=1,可得b,即可求椭圆C的方程;
(II)由于圆O是以F1,F2为直径的圆,直线l:y=kx+m与⊙O相切,利用直线与圆相切的从要条件得到一个等式,把直线方程与椭圆方程联立利用整体代换的思想,根据$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{3}{2}$,建立k的方程求k.

解答 解:(I)由题意,长轴长为4,即2a=4,解得:a=2,
∵离心率e=$\frac{1}{2}$,∴c=1,
∴b2=3,
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(II)由直线l与圆O相切,得:$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1,∴m2=1+k2
设A(x1,y1)B(x2,y2)   
由直线l:y=kx+m与椭圆方程,消去y,
整理得:(3+4k2)x2+8kmx+4m2-12=0,
∴x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$,
∴x1x2+y1y2=$\frac{7{m}^{2}-12{k}^{2}-12}{3+4{k}^{2}}$,
∵m2=1+k2
∴x1x2+y1y2=$\frac{-5-5{k}^{2}}{3+4{k}^{2}}$=-$\frac{3}{2}$,
解得:k=±$\frac{\sqrt{2}}{2}$.

点评 此题考查了椭圆的基本性质及椭圆的标准方程,还考查了直线方程与椭圆方程联立之后的整体代换设而不求,还有求解问题时方程的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网