题目内容
在一次抽奖活动中,假设某10张券中有一等奖1张,可获价值200元的奖品;有二等奖2张,每张可获价值100元的奖品;有三等奖3张,每张可获价值50元的奖品;其余4张没有奖,某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的分布列和期望.
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的分布列和期望.
(Ⅰ)设某顾客从此10张券中任抽2张中奖的事件为A
则某顾客从此10张券中任抽2张没有中奖的概率
P(
)=
=
P(A)=1-P(
)=1-
=
,
即该顾客中奖的概率为
.
(Ⅱ)ξ的所有可能值为:0,50,100,150,200,250,300(元).
且P(ξ=0)=
=
=
,
P(ξ=50)=
=
=
,
P(ξ=100)=
=
,
P(ξ=150)=
=
=
,
P(ξ=200)=
=
=
P(ξ=250)=
=
=
P(ξ=300)=
=
故ξ有分布列:
从而期望Eξ=0×
+50×
+100×
+150×
+200×
+250×
+300×
=110
则某顾客从此10张券中任抽2张没有中奖的概率
P(
| . |
| A |
| ||
|
| 2 |
| 15 |
P(A)=1-P(
| . |
| A |
| 2 |
| 15 |
| 2 |
| 3 |
| 13 |
| 15 |
即该顾客中奖的概率为
| 13 |
| 15 |
(Ⅱ)ξ的所有可能值为:0,50,100,150,200,250,300(元).
且P(ξ=0)=
| ||
|
| 2 |
| 15 |
| 6 |
| 45 |
P(ξ=50)=
| ||||
|
| 4 |
| 15 |
| 12 |
| 45 |
P(ξ=100)=
| ||||||
|
| 11 |
| 45 |
P(ξ=150)=
| ||||
|
| 2 |
| 15 |
| 6 |
| 45 |
P(ξ=200)=
| ||||||
|
| 1 |
| 9 |
| 5 |
| 45 |
P(ξ=250)=
| ||||
|
| 1 |
| 15 |
| 3 |
| 45 |
P(ξ=300)=
| ||||
|
| 2 |
| 45 |
故ξ有分布列:
| ξ | 0 | 50 | 100 | 150 | 200 | 250 | 300 | ||||||||||||||
| P |
|
|
|
|
|
|
|
| 6 |
| 45 |
| 12 |
| 45 |
| 11 |
| 45 |
| 6 |
| 45 |
| 5 |
| 45 |
| 3 |
| 45 |
| 2 |
| 45 |
练习册系列答案
相关题目