题目内容

在一次抽奖活动中,假设某10张券中有一等奖1张,可获价值200元的奖品;有二等奖2张,每张可获价值100元的奖品;有三等奖3张,每张可获价值50元的奖品;其余4张没有奖,某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的分布列和期望.
分析:(1)先求中奖的对立事件“没中奖”的概率,求“没中奖”的概率是古典概型,再用对立事件减法公式或得答案.
(2)ξ的所有可能值为:0,50,100,150,200,250,300,用古典概型分别求概率,列出分布列,再求期望即可.
解答:解:(Ⅰ)设某顾客从此10张券中任抽2张中奖的事件为A
则某顾客从此10张券中任抽2张没有中奖的概率
P(
.
A
)=
C
2
4
C
2
10
=
2
15

P(A)=1-P(
.
A
)=1-
2
15
=
2
3
13
15

即该顾客中奖的概率为
13
15

(Ⅱ)ξ的所有可能值为:0,50,100,150,200,250,300(元).
且P(ξ=0)=
C
2
4
C
2
10
=
2
15
=
6
45

P(ξ=50)=
C
1
4
C
1
3
C
2
10
=
4
15
=
12
45

P(ξ=100)=
C
1
4
C
1
2
+
C
2
3
C
2
10
=
11
45

P(ξ=150)=
C
1
3
C
1
2
C
2
10
=
2
15
=
6
45

P(ξ=200)=
C
1
4
C
1
1
+
C
2
2
C
2
10
=
1
9
=
5
45

P(ξ=250)=
C
1
3
C
1
1
C
2
10
=
1
15
=
3
45

P(ξ=300)=
C
1
2
C
1
1
C
2
10
=
2
45

故ξ有分布列:
ξ 0 50 100 150 200 250 300
P
6
45
12
45
11
45
6
45
5
45
3
45
2
45
从而期望Eξ=0×
6
45
+50×
12
45
+100×
11
45
+150×
6
45
+200×
5
45
+250×
3
45
+300×
2
45
=110
点评:本题考查古典概型、排列组合、离散型随机变量的分布列和期望,及利用概率知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网