题目内容
11.设函数f(x)=|2x+2|+|2x-3|.(1)求不等式f(x)>7 的解集;
(2)若关于x的不等式f(x)≤|3m-2|有解,求实数m的取值范围.
分析 (1)通过讨论x的范围,得到关于x的不等式组,解出即可;(2)问题转化为只需[f(x)]min≤|3m-2|即可,得到关于m的不等式,解出即可.
解答 解:(1)由f(x)>7,即|2x+2|+|2x-3|>7,
故$\left\{\begin{array}{l}{x<-1}\\{-(2x+2)-(2x-3)>7}\end{array}\right.$或$\left\{\begin{array}{l}{-1≤x<\frac{3}{2}}\\{(2x+2)-(2x-3)>7}\end{array}\right.$或$\left\{\begin{array}{l}{x≥\frac{3}{2}}\\{(2x+2)+(2x-3)>7}\end{array}\right.$,
解得:x<-$\frac{3}{2}$或x>2,
即不等式的解集是:{x|x<-$\frac{3}{2}$或x>2};
(2)f(x)≤|3m-2|,
故只需[f(x)]min≤|3m-2|即可,
又f(x)=|2x+2|+|2x-3|≥|(2x+2)-(2x-3)|=5,
∴|3m-2|≥5,即m≤-1或m≥$\frac{7}{3}$,
故m的范围是(-∞,-1]∪[$\frac{7}{3}$,+∞).
点评 本题考查了解绝对值不等式,考查绝对值的性质以及转化思想,是一道中档题.
练习册系列答案
相关题目
16.若x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为( )
| A. | 10 | B. | -10 | C. | -11 | D. | 11 |
20.设复数$z=\frac{2i}{cos120°+isin120°}$,则|z|=( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | 2 |
1.为了增强消防安全意识,某中学对全体学生做了依稀消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:
(参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
(1)试判断能否认为消防知识的测试成绩优秀与否与性别有关;
(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6人组成宣传小组,先从6人中随机抽取2人到校外宣传,求到校外宣传的同学中有男同学的概率.
| 优秀 | 非优秀 | 总计 | |
| 男生 | 15 | 35 | 50 |
| 女生 | 30 | 40 | 70 |
| 总计 | 45 | 75 | 120 |
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(2)为了宣传消防知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6人组成宣传小组,先从6人中随机抽取2人到校外宣传,求到校外宣传的同学中有男同学的概率.