ÌâÄ¿ÄÚÈÝ
20£®ÒªµÃµ½y=$\sqrt{3}$cos2x+sinxcosxµÄͼÏó£¬Ö»Ðè°Ñy=sin2xµÄͼÏóÉÏËùÓе㣨¡¡¡¡£©| A£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙÏòÉÏÒÆ¶¯$\frac{\sqrt{3}}{2}$¸öµ¥Î» | |
| B£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬ÔÙÏòÉÏÒÆ¶¯$\frac{\sqrt{3}}{2}$¸öµ¥Î» | |
| C£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙÏòÏÂÒÆ¶¯$\frac{\sqrt{3}}{2}$¸öµ¥Î» | |
| D£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬ÔÙÏòÏÂÒÆ¶¯$\frac{\sqrt{3}}{2}$¸öµ¥Î» |
·ÖÎö ÀûÓÃÈý½ÇºãµÈ±ä»»»¯¼òº¯ÊýµÄ½âÎöʽ£¬ÔÙÀûÓú¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬µÃ³ö½áÂÛ£®
½â´ð ½â£ºÓÉÓÚ y=$\sqrt{3}$cos2x+sinxcosx=$\sqrt{3}$•$\frac{1+cos2x}{2}$+$\frac{1}{2}$sin2x=sin£¨2x+$\frac{¦Ð}{3}$£©+$\frac{\sqrt{3}}{2}$£¬
¡àÖ»Ðè°Ñy=sin2xµÄͼÏóÉÏËùÓеãÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»£¬ÔÙÏòÉÏÒÆ¶¯$\frac{\sqrt{3}}{2}$¸öµ¥Î»£¬
¿ÉµÃy=$\sqrt{3}$cos2x+sinxcosxµÄͼÏó£¬
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½ÇºãµÈ±ä»»£¬º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®ÈôÈý¸öÕýÊýa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬ÆäÖÐa=5+2$\sqrt{6}$£¬c=5-2$\sqrt{6}$£¬Ôòb=£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | 5 | D£® | 2$\sqrt{6}$ |
8£®ÒÑÖªº¯Êýf£¨x£©=sinx-x£¬Ôò²»µÈʽf£¨x+1£©+f£¨2-2x£©£¾0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬$-\frac{1}{3}$£© | B£® | £¨$-\frac{1}{3}$£¬+¡Þ£© | C£® | £¨3£¬+¡Þ£© | D£® | £¨-¡Þ£¬3£© |
15£®Èôa2017=b£¨a£¾0£¬ÇÒa¡Ù1£©£¬Ôò£¨¡¡¡¡£©
| A£® | logab=2017 | B£® | logba=2017 | C£® | log2017a=b | D£® | log2017b=a |
5£®Èç¹ûʵÊýx£¬yÂú×ã$\left\{\begin{array}{l}{2x-y-6¡Ü0}\\{x+y-3¡Ý0}\\{y¡Ü3}\end{array}\right.$£¬Ôòz=x+2yµÄ×î´óֵΪ£¨¡¡¡¡£©
| A£® | -6 | B£® | 3 | C£® | 6 | D£® | $\frac{21}{2}$ |
9£®ÒÑÖªÅ×ÎïÏßy2=4px£¨p£¾0£©ÉÏÒ»µãMµ½¸ÃÅ×ÎïÏß½¹µãFµÄ¾àÀë|MF|=3p£¬ÔòÖ±ÏßMFµÄбÂÊΪ£¨¡¡¡¡£©
| A£® | ¡À2$\sqrt{2}$ | B£® | ¡À1 | C£® | ¡À$\sqrt{3}$ | D£® | ¡À$\frac{\sqrt{3}}{3}$ |