ÌâÄ¿ÄÚÈÝ
½ü¼¸ÄêÀ´,ÎÒ¹úÐí¶àµØÇø¾³£³öÏָɺµÏÖÏó,Ϊ¿¹ºµ¾³£Òª½øÐÐÈ˹¤½µÓê.ÏÖÓÉÌìÆøÔ¤±¨µÃÖª,ijµØÔÚδÀ´5ÌìµÄÖ¸¶¨Ê±¼äµÄ½µÓê¸ÅÂÊÊÇ:ǰ3Ìì¾ùΪ50%,ºó2Ìì¾ùΪ80%,5ÌìÄÚÈκÎÒ»ÌìµÄ¸ÃÖ¸¶¨Ê±¼äûÓнµÓê,ÔòÔÚµ±ÌìʵÐÐÈ˹¤½µÓê,·ñÔò,µ±Ì첻ʵʩÈ˹¤½µÓê.
(1)ÇóÖÁÉÙÓÐ1ÌìÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊ.
(2)Çó²»ÐèÒªÈ˹¤½µÓêµÄÌìÊýxµÄ·Ö²¼ÁÐºÍÆÚÍû.
(1)
(2) xµÄ·Ö²¼ÁÐÊÇ:
x | 0 | 1 | 2 | 3 | 4 | 5 |
P |
|
|
|
|
|
|
3.1
¡¾½âÎö¡¿(1)5ÌìÈ«²»ÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇP1=(
)3¡¤(
)2=
,¹ÊÖÁÉÙÓÐ1ÌìÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇ1-P1=1-
=
.
(2)xµÄȡֵÊÇ0,1,2,3,4,5,ÓÉ(1)Öª5Ìì²»ÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇ:P(x=5)=P1=
,
4Ìì²»ÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇ:
P(x=4)=(
)3
¡Á
+
(
)3(
)2=![]()
=
,
3Ìì²»ÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇ:
P(x=3)=
(
)3(
)2+
(
)3
(
)(
)+(
)3(
)2=
,
2Ìì²»ÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇ:
P(x=2)=
(
)3(
)2+
(
)3
(
)¡Á(
)+(
)3¡Á(
)2=
,
1Ìì²»ÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇ:
P(x=1)=
(
)3(
)2+(
)3
(
)(
)=
,
0Ìì²»ÐèÒªÈ˹¤½µÓêµÄ¸ÅÂÊÊÇ:
P(x=0)=(
)3(
)2=
,
¹Ê²»ÐèÒªÈ˹¤½µÓêµÄÌìÊýxµÄ·Ö²¼ÁÐÊÇ:
x | 0 | 1 | 2 | 3 | 4 | 5 |
P |
|
|
|
|
|
|
²»ÐèÒªÈ˹¤½µÓêµÄÌìÊýxµÄÆÚÍûÊÇ:
E(x)=0¡Á
+1¡Á
+2¡Á
+3¡Á
+4¡Á
+5¡Á
=3.1.
¡¾·½·¨¼¼ÇÉ¡¿ÇóÀëÉ¢ÐÍËæ»ú±äÁ¿¾ùÖµÓë·½²îµÄ»ù±¾·½·¨
(1)¶¨Òå·¨:ÒÑÖªËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÇóËüµÄ¾ùÖµ¡¢·½²îºÍ±ê×¼²î,¿ÉÖ±½Ó°´¶¨Òå(¹«Ê½)Çó½â.
(2)ÐÔÖÊ·¨:ÒÑÖªËæ»ú±äÁ¿¦ÎµÄ¾ùÖµÓë·½²î,Çó¦ÎµÄÏßÐÔº¯Êý¦Ç=a¦Î+bµÄ¾ùÖµÓë·½²î,¿ÉÖ±½ÓÀûÓþùÖµ¡¢·½²îµÄÐÔÖÊÇó½â.
(3)¹«Ê½·¨:ÈçÄÜ·ÖÎöËù¸øËæ»ú±äÁ¿ÊÇ·þ´Ó³£Óõķֲ¼(ÈçÁ½µã·Ö²¼,¶þÏî·Ö²¼µÈ),¿ÉÖ±½ÓÀûÓÃËüÃǵľùÖµ¡¢·½²î¹«Ê½Çó½â.
¹ØÓÚÏßÐԻعé,ÒÔÏÂ˵·¨´íÎóµÄÊÇ(¡¡¡¡)
(A)×Ô±äÁ¿È¡ÖµÒ»¶¨Ê±,Òò±äÁ¿µÄȡֵ´øÓÐÒ»¶¨Ëæ»úÐÔµÄÁ½¸ö±äÁ¿Ö®¼äµÄ¹ØÏµ½Ð×öÏà¹Ø¹ØÏµ
(B)ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÓÃÃèµãµÄ·½·¨µÃµ½µÄ±íʾ¾ßÓÐÏà¹Ø¹ØÏµµÄÁ½¸ö±äÁ¿µÄÒ»×éÊý¾ÝµÄͼÐνÐ×öÉ¢µãͼ
(C)ÏßÐԻعéÖ±Ïß·½³Ì×îÄÜ´ú±í¹Û²âÖµx,yÖ®¼äµÄ¹ØÏµ,ÇÒÆä»Ø¹éÖ±ÏßÒ»¶¨¹ýÑù±¾ÖÐÐĵã(
,
)
(D)¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄλͬѧ¸÷×Ô¶ÔA,BÁ½±äÁ¿µÄÏßÐÔÏà¹ØÐÔ×÷ÊÔÑé,²¢Óɻعé·ÖÎö·¨·Ö±ðÇóµÃÏà¹ØÏµÊýrxyÈçϱí
| ¼× | ÒÒ | ±û | ¶¡ |
rxy | 0.82 | 0.78 | 0.69 | 0.85 |
Ôò¼×ͬѧµÄÊÔÑé½á¹ûÌåÏÖA,BÁ½±äÁ¿¸üÇ¿µÄÏßÐÔÏà¹ØÐÔ