题目内容
点(1,-1)到直线x-y+1=0的距离是 ( )
D
设f(x)、g(x)分别是定义在(-∞,0)∪(0,+∞)上的奇函数和偶函数,当x<0时f’(x)g(x)+ f(x) g’(x)=0且g(3)=0,则不等式f(x)·g(x)<0的解集是 ( )
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)
已知数列{an}中,a1=3,前n项和Sn满足条件Sn=6-2an+1.计算a2、a3、a4,然后猜想an的表达式。并证明你的结论。
已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145
(1)求数列{an}的通项公式bn;
(2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论。
已知定义在上的函数满足,当时,.设在上的最大值为,且的前项和为,则( )
(A)3 (B) (C)2 (D)
由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,<APB=60.,则动点P的轨迹方程为_____.
“ a=b” j是“直线与圆 ( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
曲线C:与轴的交点关于原点的对称点称为“望点”,以“望点”为圆心,凡是与曲线C有公共点的圆,皆称之为“望圆”,则当a=1,b=1时,所有的“望圆”中,面积最小的“望圆”的面积为 .
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定M的位置,使得AM∥平面BEF,并证明你的结论.