题目内容
11.南北朝时代的伟大科学家祖暅提出体积计算原理:“幂势既同,则积不容异“意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.图1中阴影部分是由曲线y=$\frac{1}{4}{x}^{2}$、直线x=4以及x轴所围成的平面图形Ω,将图形Ω绕y轴旋转一周,得几何体Γ.根据祖暅原理,从下列阴影部分的平面图形绕y轴旋转一周所得的旋转体中选一个求得Γ的体积为32π分析 由题意可得旋转体夹在两相距为8的平行平面之间,用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,求出所得截面的面积相等,利用祖暅原理知,两个几何体体积相等.
解答 解:如图,两图形绕y轴旋转所得的旋转体夹在两相距为8的平行平面之间,![]()
用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,所得截面面积 S=π(42-4|y|),
S1=π(42-y2)-π[4-(2-|y|)2]=π(42-4|y|)
∴S1=S,由祖暅原理知,两个几何体体积相等,
∵Γ1=$\frac{1}{2}$×$\frac{4π}{3}$×(43-23-23)=$\frac{2π}{3}$×48=32π,
∴Γ=32π.
故答案为:32π.
点评 本题主要考查祖暅原理的应用,求旋转体的体积的方法,体现了等价转化、数形结合的数学思想,属于中档题.
练习册系列答案
相关题目
6.若曲线f(x)=lnx-(a+1)x存在与直线x-2y+1=0垂直的切线,则实数a的取值范围为( )
| A. | (-$\frac{1}{2}$,+∞) | B. | [$\frac{1}{2}$,+∞) | C. | (1,+∞) | D. | [1,+∞) |
4.2014年3月的“两会”上,李克强总理在政府工作报告中,首次提出“倡导全民阅读”.某学校响应政府倡导,在学生中发起读书热潮.现统计了从2014年下半年以来,学生每半年人均读书量,如下表:
根据散点图,可以判断出人均读书量y与时间代号t具有线性相关关系.
(Ⅰ)求y关于t的回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(Ⅱ)根据所求的回归方程,预测该校2017年上半年的人均读书量.
附:回归直线的斜率和截距的最小二乘估公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.
| 时间 | 2014年下半年 | 2015年上半年 | 2015年下半年 | 2016年上半年 | 2016年下半年 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 人均读书量y(本) | 4 | 5 | 6 | 7 | 9 |
(Ⅰ)求y关于t的回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(Ⅱ)根据所求的回归方程,预测该校2017年上半年的人均读书量.
附:回归直线的斜率和截距的最小二乘估公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.
1.已知全集U=R,A={x|x>0},B={x|x>2},则A∩(∁UB)=( )
| A. | {x|0≤x<2} | B. | {x|x<0} | C. | {x|0<x≤2} | D. | {x|x>2} |
3.设$\overrightarrow a,\overrightarrow b$都是非零向量,下列四个条件中,一定能使$\frac{\overrightarrow a}{|\overrightarrow a|}+\frac{\overrightarrow b}{|\overrightarrow b|}=0$成立的是( )
| A. | $\overrightarrow a⊥\overrightarrow b$ | B. | $\overrightarrow a$∥$\overrightarrow b$ | C. | $\overrightarrow a=2\overrightarrow b$ | D. | $\overrightarrow a=-\overrightarrow b$ |