题目内容
若数列{an}的前n项和为Sn,对任意正整数n都有6Sn=1-2an.
(1)求数列{an}的通项公式;
(2)若c1=0,且对任意正整数n都有cn+1-cn=log
an,求证:对任意n≥2,n∈N*都有
+
+…+
<
.
(1)求数列{an}的通项公式;
(2)若c1=0,且对任意正整数n都有cn+1-cn=log
| 1 |
| 2 |
| 1 |
| c2 |
| 1 |
| c3 |
| 1 |
| cn |
| 3 |
| 4 |
考点:数列的求和,数列递推式
专题:综合题,等差数列与等比数列
分析:(1)令n=1可求a1=
,当n≥2时,由6Sn=1-2an,得6Sn-1=1-2an-1,两式相减可得递推式,由此可判断{an}是等比数列,可求an;
(2)易得cn+1-cn=log
an=2n+1,利用累加法可求得cn,进而可得
=
=
(
-
),利用裂项相消法可求得
+
+…+
,进而可得结论;
| 1 |
| 8 |
(2)易得cn+1-cn=log
| 1 |
| 2 |
| 1 |
| cn |
| 1 |
| (n-1)(n+1) |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| c2 |
| 1 |
| c3 |
| 1 |
| cn |
解答:
解:(1)当n=1时,6S1=1-2a1.解得a1=
;
当n≥2时,6Sn=1-2an①,6Sn-1=1-2an-1②,
①-②,化简得
=
,
∴{an}是首项为
,公比为
的等比数列,
∴an=
•(
)n-1=(
)2n+1.
(2)∵cn+1-cn=log
an=2n+1,
∴当n≥2时,cn=(cn-cn-1)+(cn-1-cn-2)+…+(c2-c1)+c1=(2n-1)+(2n-3)+…+3+0=n2-1,
∴
=
=
(
-
),
∴
+
+…+
=
(1-
+
-
+
-
+…+
-
+
-
)=
(1+
-
-
)=
-
(
+
)<
.
| 1 |
| 8 |
当n≥2时,6Sn=1-2an①,6Sn-1=1-2an-1②,
①-②,化简得
| an |
| an-1 |
| 1 |
| 4 |
∴{an}是首项为
| 1 |
| 8 |
| 1 |
| 4 |
∴an=
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 2 |
(2)∵cn+1-cn=log
| 1 |
| 2 |
∴当n≥2时,cn=(cn-cn-1)+(cn-1-cn-2)+…+(c2-c1)+c1=(2n-1)+(2n-3)+…+3+0=n2-1,
∴
| 1 |
| cn |
| 1 |
| (n-1)(n+1) |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴
| 1 |
| c2 |
| 1 |
| c3 |
| 1 |
| cn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| 4 |
点评:该题考查由递推式求数列通项、等比数列的通项公式、数列求和,考查学生的运算求解能力,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目