题目内容
已知sin(α+
)+sinα=
,则sin(α+
)的值是( )
| π |
| 3 |
| 4 |
| 5 |
| 3 |
| 19π |
| 6 |
分析:由条件利用三角函数的恒等变换可得 sin(α+
)=
,再由 sin(α+
)=sin(α+
+π)=-sin(α+
) 求出结果.
| π |
| 6 |
| 4 |
| 5 |
| 19π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:解:∵sin(α+
)+sinα=
,∴
sinα+
cosα+sinα=
,即
(
sinα+
cosα)=
,
∴sin(α+
)=
.
故 sin(α+
)=sin(α+
+π)=-sin(α+
)=-
,
故选C.
| π |
| 3 |
| 4 |
| 5 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
4
| ||
| 5 |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
4
| ||
| 5 |
∴sin(α+
| π |
| 6 |
| 4 |
| 5 |
故 sin(α+
| 19π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 4 |
| 5 |
故选C.
点评:本题主要考查三角函数的恒等变换及化简求值,求出sin(α+
)=
,是解题的关键,属于中档题.
| π |
| 6 |
| 4 |
| 5 |
练习册系列答案
相关题目
已知sin(α+
)+sinα=-
,-
<α<0,则cos(α+
)等于( )
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
| 2π |
| 3 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|