题目内容
13.解下列关于x的不等式:(1)-x2+2x+1<0
(2)$\frac{3x+3}{x}≤2$.
分析 (1)将二次项系数化为正数,然后解之;
(2)移项通分,等价转化为整式不等式解之.
解答 解:(1)$-{x^2}+2x+1<0?{x^2}-2x-1>0?x<1-\sqrt{2}或x>1+\sqrt{2}$
所以不等式的解集是$({-∞,1-\sqrt{2}})∪({1+\sqrt{2},+∞})$;
(2)$\frac{3x+3}{x}≤2?\frac{3x+3}{x}-2≤0?\frac{x+3}{x}≤0$$?\left\{\begin{array}{l}x≠0\\ x({x+3})≤0\end{array}\right.?-3≤x<0$,所以不等式的解集是[-3,0).
点评 不同考查了不等式的解法;关键是等价转化为最简的整式不等式解之.
练习册系列答案
相关题目
1.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=m(m≠0)$的渐近线斜率为±2,则该双曲线的离心率为( )
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$ |
8.已知数列{an}中,a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$(n>1),则a2016的值为( )
| A. | -$\frac{1}{4}$ | B. | 5 | C. | $\frac{4}{5}$ | D. | 2 |
3.当x>1时不等式$\frac{{{x^2}-x+1}}{x-1}≥a$恒成立,则实数a的取值范围是( )
| A. | (-∞,3] | B. | [3,+∞) | C. | (-∞,2] | D. | [2,+∞) |