题目内容
已知cos(α+β)=
,cos(α-β)=-
,且
π<α+β<2π,
<α-β<π,分别求cos 2α和cos2β的值.
| 4 |
| 5 |
| 4 |
| 5 |
| 3 |
| 2 |
| π |
| 2 |
∵cos(α+β)=
,
π<α+β<2π
∴sin(α+β)=-
,
∵cos(α-β)=-
,
<α-β<π
∴sin(α-β)=
,
cos2α=cos[(α+β)+(α-β)]
=
×(-
)-
×(-
)=-
cos2β=cos[(α+β)-(α-β)]=
×(-
)+
×(-
)=-1.
| 4 |
| 5 |
| 3 |
| 2 |
∴sin(α+β)=-
| 3 |
| 5 |
∵cos(α-β)=-
| 4 |
| 5 |
| π |
| 2 |
∴sin(α-β)=
| 3 |
| 5 |
cos2α=cos[(α+β)+(α-β)]
=
| 4 |
| 5 |
| 4 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
| 7 |
| 25 |
cos2β=cos[(α+β)-(α-β)]=
| 4 |
| 5 |
| 4 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
练习册系列答案
相关题目