题目内容
1.已知正项等比数列{an}中有$\root{21}{{a}_{1993}•{a}_{1994}•{a}_{1995}…{a}_{2013}}$=$\root{4005}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{4005}}$,则在等差数列{bn}中,类似的正确的结论有$\frac{{b}_{1993}+{b}_{1994}+…+{b}_{2013}}{21}$=$\frac{{b}_{1}+{b}_{2}+…+{b}_{4005}}{4005}$..分析 根据等差和等比的类比时,主要是“和”与“积”之间的类比,在等差中为和在等比中为积,按此规律即可得到结论.
解答 解:根据等比性质可知$\root{21}{{a}_{1993}•{a}_{1994}•{a}_{1995}…{a}_{2013}}$=$\root{4005}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{4005}}$=a2003,
所以根据等差数列中,有$\frac{{b}_{1993}+{b}_{1994}+…+{b}_{2013}}{21}$=$\frac{{b}_{1}+{b}_{2}+…+{b}_{4005}}{4005}$.
故答案为$\frac{{b}_{1993}+{b}_{1994}+…+{b}_{2013}}{21}$=$\frac{{b}_{1}+{b}_{2}+…+{b}_{4005}}{4005}$.
点评 类比推理是指根据两个(或两类)对象之间具有(或不具有)某些相同或相似的性质,而且已知其中一个(或另一类)还具有(或不具有)另一性质,由此推出另一个(或另一类)对象也具有(或不具有)这一性质.
练习册系列答案
相关题目
9.一个正三棱柱的正视图如图所示,已知它的体积为3,则该正三棱柱的高为( )

| A. | 1 | B. | $\sqrt{3}$ | C. | 3 | D. | 3$\sqrt{3}$ |
16.某公司新招聘8名员工,随机平均分配给下属的甲、乙两个部门,则事件“两名英语翻译人员不在同一部门,另外三名电脑编程人员也不在同一部门”发生的概率为( )
| A. | $\frac{18}{35}$ | B. | $\frac{15}{35}$ | C. | $\frac{12}{35}$ | D. | $\frac{9}{35}$ |
6.角A是△ABC的一个内角,若命题p:A<$\frac{π}{3}$,命题q:sinA<$\frac{\sqrt{3}}{2}$,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
10.设双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F1,左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+$\sqrt{{a}^{2}+{b}^{2}}$,则该双曲线的离心率取值范围是( )
| A. | (1-$\sqrt{2}$) | B. | ($\sqrt{2}$,+∞) | C. | (1,2$\sqrt{2}$) | D. | (2$\sqrt{2}$,+∞) |