题目内容

4.若数列{xn}满足$lg{x_{n+1}}=1+lg{x_n}(n∈{N^*})$,且x1+x2…+x10=100,则lg(x11+x12…+x20)=12.

分析 数列{xn}满足lgxn+1=1+lgxn(n∈N*),可得$lg\frac{{x}_{n+1}}{{x}_{n}}$=1,即xn+1=10xn.再利用等比数列的通项公式及其性质即可得出.

解答 解:由题意知lgxn+1-lgxn=1,
∴$lg\frac{{x}_{n+1}}{{x}_{n}}$=1,
lg(x11+x12…+x20
=lg[(x1+x2…+x10)×1010],
=lg(100×1010),
=12.
故答案为:12.

点评 本题考查了等比数列的通项公式及其性质、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网