题目内容
13.命题“?x∈R,x2-5x+1>0”的否定为( )| A. | ?x∈R,x2-5x+1≤0 | B. | ?x∈R,x2-5x+1≤0 | C. | ?x∈R,x2-5x+1<0 | D. | ?x∈R,x2-5x+1>0 |
分析 直接写出全程命题的否定得答案.
解答 解:命题“?x∈R,x2-5x+1>0”的否定为:?x∈R,x2-5x+1≤0.
故选:B.
点评 本题考查全程命题的否定,关键是掌握格式,是基础题.
练习册系列答案
相关题目
3.下列正确的是( )
| A. | 如果两个复数的积是实数,那么这两个复数互为共轭复数 | |
| B. | 用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是:方程x2+ax+b=0至多有一个实根 | |
| C. | 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则可得到a10+b10=122 | |
| D. | 在复平面中复数z满足|z|=2的点的轨迹是以原点为圆心,以2为半径的圆 |
4.已知命题p:?x∈R,x2-x-2≥0,那么命题?p为( )
| A. | ?x∈R,x2-x-2≤0 | B. | ?x∈R,x2-x-2<0 | C. | ?x∈R,x2-x-2≤0 | D. | ?x∈R,x2-x-2<0 |
8.
如图,在等腰直角三角形ABC中,AB=AC=$\sqrt{2}$,D,E是线段BC上的点,且DE=$\frac{1}{3}$BC,则$\overrightarrow{AD}$•$\overrightarrow{AE}$的取值范围是( )
| A. | $[{\frac{8}{9},\;\frac{4}{3}}]$ | B. | $[{\frac{4}{3},\;\frac{8}{3}}]$ | C. | $[{\frac{8}{9},\;\frac{8}{3}}]$ | D. | $[{\frac{4}{3},\;+∞})$ |
5.
一个几何体的三视图如图所示,其中正视图和俯视图的都是腰长为1的两个全等的等腰直角三角形,则该几何体的体积为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |