题目内容

已知n,k∈N*,且k≤n,kC
 
k
n
=nC
 
k-1
n-1
,则可推出
C
 
1
n
+2C
 
2
n
+3C
 
3
n
+…+kC
 
k
n
+…+nC
 
n
n
=n(C
 
0
n-1
+C
 
1
n-1
+…+C
 
k-1
n-1
+…+C
 
n-1
n-1
)=n•2n-1
由此,可推出C
 
1
n
+22C
 
2
n
+32C
 
3
n
+…+k2C
 
k
n
+…+n2C
 
n
n
=
 
考点:二项式定理的应用
专题:二项式定理
分析:由(1+x)n=
C
0
n
+x
C
1
n
+x2
C
2
n
+…+xn
C
n
n
,两边求导数,二次求导数,令x=1,即可得出正确的结果.
解答: 解:∵(1+x)n=
C
0
n
+x
C
1
n
+x2
C
2
n
+…+xn
C
n
n

∴两边求导数,得
n(1+x)n-1=
C
1
n
+2x
C
2
n
+3x2
C
3
n
+…+nxn-1
C
n
n

两边同乘以x,得
nx(1+x)n-1=x
C
1
n
+2x2
C
2
n
+3x3
C
3
n
+…+nxn
C
n
n

两边再求导,得
n(1+x)n-1+n(n-1)x(1+x)n-2=
C
1
n
+22
C
2
n
•x+32
C
3
n
•x2+…+n2
C
n
n
xn-1
令x=1,左边=n•2n-1+n(n-1)•2n-2=n(n+1)2n-2
右边=
C
1
n
+22
C
2
n
+32
C
3
n
+…+n2
C
n
n

所以C
 
1
n
+22C
 
2
n
+32C
 
3
n
+…+k2C
 
k
n
+…+n2C
 
n
n
=n(n+1)2n-2
故答案为:n(n+1)2n-2
点评:本题考查了二项式定理的应用问题,解题时应灵活应用求导公式以及特殊值进行计算,是综合性题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网