题目内容
已知α∈(0,
),cos(α+
)=
,则
=______.
| π |
| 2 |
| π |
| 4 |
| 3 |
| 5 |
| cosα |
| cos2α |
∵α∈(0,
),cos(α+
)=
,
∴sin(α+
)=
∴cosα=cos[(α+
)-
]
=cos(α+
)cos
+sin(α+
)sin
=
×
+
×
=
∴cos2α=2cos2α-1=
∴
=
=
故答案为:
| π |
| 2 |
| π |
| 4 |
| 3 |
| 5 |
∴sin(α+
| π |
| 4 |
| 4 |
| 5 |
∴cosα=cos[(α+
| π |
| 4 |
| π |
| 4 |
=cos(α+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| ||
| 2 |
7
| ||
| 5 |
∴cos2α=2cos2α-1=
| 171 |
| 25 |
∴
| cosα |
| cos2α |
| ||||
|
35
| ||
| 171 |
故答案为:
35
| ||
| 171 |
练习册系列答案
相关题目