ÌâÄ¿ÄÚÈÝ
(±¾ÌâÂú·Ö18·Ö) ±¾Ìâ¹²ÓÐ3¸öСÌ⣬µÚ1СÌâÂú·Ö4·Ö£¬µÚ2СÌâÂú·Ö6·Ö. µÚ3СÌâÂú·Ö8·Ö.
£¨ÎÄ£©¶ÔÓÚÊýÁÐ
£¬´ÓÖÐѡȡÈô¸ÉÏ²»¸Ä±äËüÃÇÔÚÔÀ´ÊýÁÐÖеÄÏȺó´ÎÐò£¬µÃµ½µÄÊýÁгÆÎªÊÇÔÀ´ÊýÁеÄÒ»¸ö×ÓÊýÁÐ. ijͬѧÔÚѧϰÁËÕâÒ»¸ö¸ÅÄîÖ®ºó£¬´òËãÑо¿Ê×ÏîΪ
,¹«²îΪ
µÄÎÞÇîµÈ²îÊýÁÐ
µÄ×ÓÊýÁÐÎÊÌ⣬Ϊ´Ë£¬ËûÈ¡ÁËÆäÖеÚÒ»Ïî
£¬µÚÈýÏî
ºÍµÚÎåÏî
.
(1) Èô
³ÉµÈ±ÈÊýÁÐ,Çó
掙术
(2) ÔÚ
,
µÄÎÞÇîµÈ²îÊýÁÐ
ÖУ¬ÊÇ·ñ´æÔÚÎÞÇî×ÓÊýÁÐ
£¬Ê¹µÃÊýÁÐ
ΪµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çë¸ø³öÊýÁÐ
µÄͨÏʽ²¢Ö¤Ã÷£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
(3) ËûÔÚÑо¿¹ý³ÌÖвÂÏëÁËÒ»¸öÃüÌ⣺¡°¶ÔÓÚÊ×ÏîΪÕýÕûÊý
£¬¹«±ÈΪÕýÕûÊý
(
)µÄÎÞÇîµÈ±ÈÊý ÁÐ
,×Ü¿ÉÒÔÕÒµ½Ò»¸ö×ÓÊýÁÐ
,ʹµÃ
¹¹³ÉµÈ²îÊýÁС±. ÓÚÊÇ£¬ËûÔÚÊýÁÐ
ÖÐÈÎÈ¡ÈýÏî
£¬ÓÉ
Óë
µÄ´óС¹ØÏµÈ¥ÅжϸÃÃüÌâÊÇ·ñÕýÈ·. Ëû½«µÃµ½Ê²Ã´½áÂÛ£¿
£¨1£©d=0£¨2£©´æÔÚbn=4n-1Ϊ·ûºÏÌõ¼þµÄÒ»¸ö×ÓÊýÁУ¬ÒòΪbn="1+3M" ="1+3"
[(M+1)-1]ÊÇ{an}ÖеĵÚM+1Ï3£©Í¨¹ý¼ÆËã¿ÉÒԵõ½
>
£¬´Ó¶øÔÃüÌâΪ¼ÙÃüÌâ
¡¾½âÎö¡¿
ÊÔÌâ·ÖÎö£º(1)ÓÉa32=a1a5£¬ ¡¡2·Ö
¼´(a1+2d)2=a1(a1+4d)£¬µÃd=0. ¡¡4·Ö
(2) an=1+3(n-1)£¬Èçbn=4n-1±ãΪ·ûºÏÌõ¼þµÄÒ»¸ö×ÓÊýÁÐ. ¡¡7·Ö
ÒòΪbn=4n-1=(1+3)n-1=1+
3+
32+¡+
3n-1=1+3M, ¡¡9·Ö
͉˕M=
+
3+¡+
3n-2ΪÕýÕûÊý£¬
ËùÒÔ,bn="1+3M" ="1+3" [(M+1)-1]ÊÇ{an}ÖеĵÚM+1ÏµÃÖ¤. ¡¡11·Ö
(×¢£ºbnµÄͨÏʽ²»Î¨Ò»)
(3) ¸ÃÃüÌâΪ¼ÙÃüÌâ. ¡¡12·Ö
ÓÉÒÑÖª¿ÉµÃ
,
Òò´Ë,
,ÓÖ
,
¹Ê
, ¡¡15·Ö
ÓÉÓÚ
ÊÇÕýÕûÊý£¬ÇÒ
£¬Ôò
,
ÓÖ
ÊÇÂú×ã
µÄÕýÕûÊý£¬Ôò
,
,
ËùÒÔ£¬
>
,´Ó¶øÔÃüÌâΪ¼ÙÃüÌâ.
¡¡18·Ö
¿¼µã£º±¾Ð¡ÌâÖ÷Òª¿¼²éµÈ²îÊýÁк͵ȱÈÊýÁÐÊÇ×ÛºÏÔËË㣬¿¼²éѧÉú·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦ºÍÔËËãÇó½âÒÔ¼°ÍÆÀíÂÛÖ¤µÄÄÜÁ¦.
µãÆÀ£ºµÈ²îÊýÁк͵ȱÈÊýÁÐÊǸ߿¼Öг£¿¼µÄÁ½ÖÖÌØÊâÊýÁУ¬ËüÃǵÄÅж¨ºÍͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½µÄÓ¦ÓÃÒªÊìÁ·ÕÆÎÕ£¬Áé»îÓ¦ÓÃ.