题目内容
9.若2x-y+1≥0,2x+y≥0,且x≤1,则z=x+3y的最小值为-5.分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标得答案.
解答 解:由2x-y+1≥0,2x+y≥0,且x≤1作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=1}\\{2x+y=0}\end{array}\right.$,解得A(1,-2),
化目标函数z=x+3y为y=$-\frac{x}{3}+\frac{z}{3}$,
由图可知,当直线y=$-\frac{x}{3}+\frac{z}{3}$过A时,直线在y轴上的截距最小,z有最小值为1+3×(-2)=-5.
故答案为:-5.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
19.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”,若已知数列{an},的前n项的“均倒数”为$\frac{1}{5n}$,又bn=$\frac{{a}_{n}}{5}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{10}{b}_{11}}$=( )
| A. | $\frac{8}{17}$ | B. | $\frac{9}{19}$ | C. | $\frac{10}{21}$ | D. | $\frac{11}{23}$ |