题目内容

5.函数f(x)=Asin(ωx+φ)的部分图象如图所示,则函数的解析式可以是(  )
A.f(x)=2cos(3x+$\frac{2π}{3}$)B.f(x)=2sin($\frac{15}{7}x-\frac{5π}{6}$)
C.f(x)=2sin(3x-$\frac{π}{6}$)D.f(x)=2sin(3x-$\frac{π}{6}$)或f(x)=2sin($\frac{15}{7}x-\frac{5π}{6}$)

分析 由图形可以求出A,根据图象过(0,-1),($\frac{7π}{18}$,0),把点的坐标代入求出ω,φ,从而可得函数解析式.

解答 解:由图象知A=2,点(0,-1),($\frac{7π}{18}$,0)在函数图象上,
∵2sinφ=-1,
∴可得sinφ=-$\frac{1}{2}$,可得:φ=2kπ+$\frac{7π}{6}$,或φ=2kπ+$\frac{11π}{6}$,k∈Z
∵2sin($\frac{7π}{18}$ω+2kπ+$\frac{7π}{6}$)=0,或2sin($\frac{7π}{18}$ω+2kπ+$\frac{11π}{6}$)=0,
∴$\frac{7π}{18}$ω+$\frac{7π}{6}$=kπ,k∈Z,或$\frac{7π}{18}$ω+$\frac{11π}{6}$=kπ,k∈Z,
解得:ω=$\frac{18k}{7}$-3,或ω=$\frac{18k}{7}$-$\frac{33}{7}$,k∈Z,
∴当k=2,ω=$\frac{15}{7}$,φ=4π+$\frac{7π}{6}$,可得函数的解析式可以是f(x)=2sin($\frac{15}{7}$x+4π+$\frac{7π}{6}$)=2sin($\frac{15}{7}x-\frac{5π}{6}$).
当k=3,ω=3,φ=6π+$\frac{11π}{6}$,可得函数的解析式可以是f(x)=2sin(3x-$\frac{π}{6}$).
故选:D.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查分析问题解决问题的能力,解题的关键是初相的求法要注意,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网