题目内容

甲、乙两名射击运动员参加某项有奖射击活动(射击次数相同).已知两名运动员射击的环数都稳定在7,8,9,10环,他们射击成绩的条形图如下:

(I)求乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率.
(Ⅱ)甲、乙两名运动员现在要同时射击4次,如果甲、乙同时击中9环以上(包括9环)3次时,可获得总奖金两万元;如果甲、乙同时击中9环以上(包括9环)4次时,可获得总奖金五万元,其他结果不予奖励.求甲、乙两名运动员可获得总奖金数的期望值.(注:频率可近似看作概率)
考点:离散型随机变量的期望与方差,频率分布直方图
专题:概率与统计
分析:(Ⅰ)记“甲运动员击中i环”为事件Ai;“乙运动员击中i环”为事件Bi(i=1,2,3,…,10),P(B8)=1-P(B7)-P(B9)-P(B10).P(A9)+P(A10)=0.6,P(B9)+P(B10)=0.5,由此能求出甲、乙同时击中9环以上(包括9环)的概率.
(Ⅱ)(Ⅱ)由题意知ξ=0,1,2,3,4,P(ξ=3)=
C
3
4
0.33•0.7
=0.0756,P(ξ=4)=0.34=0.0081,由此能求出甲、乙两名运动员可获得总奖金数的期望值.
解答: 解:(Ⅰ)记“甲运动员击中i环”为事件Ai
“乙运动员击中i环”为事件Bi(i=1,2,3,…,10)
∴P(B8)=1-P(B7)-P(B9)-P(B10
=1-0.2-0.1-0.4=0.3.(2分)
∵P(A9)+P(A10)=1-0.15-0.25=0.6,
P(B9)+P(B10)=0.1+0.4=0.5,
∴甲、乙同时击中9环以上(包括9环)的概率:0.6×0.5=0.3.(6分)
(Ⅱ)由题意知ξ=0,1,2,3,4,
则ξ~B(4,0.3),
P(ξ=3)=
C
3
4
0.33•0.7
=0.0756,
P(ξ=4)=0.34=0.0081,
∴甲、乙两名运动员可获得总奖金数的期望值:
0.0756×20000+0.0081×50000=1917(元).
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网