题目内容


f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.

(1)求f(π)的值;

(2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积.


解析:(1)由f(x+2)=-f(x),得                       

f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),

所以f(x)是以4为周期的函数,从而得

f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.

(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],

f(1+x)=f(1-x).

故知函数yf(x)的图象关于直线x=1对称.

又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.

当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S

S=4SOAB=4×=4.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网