题目内容

10.设f(x)是定义域R上的增函数,?x,y∈R,f(x+y)=f(x)+f(y)-1,且f(3)=3,记an=f(n)(n∈N*),则数列{an}的前n项和Sn=$\frac{n(n+4)}{3}$.

分析 令x=y=1,以及x=1,y=2,结合条件f(3)=3,可得f(1),再令x=n,y=1,结合等差数列的求和公式,即可得到所求和.

解答 解:令x=y=1,可得f(2)=2f(1)-1,
再令x=1,y=2,可得f(3)=f(1)+f(2)-1=3f(1)-2,
由f(3)=3,可得f(1)=$\frac{5}{3}$,
令x=n,y=1,可得f(n+1)=f(n)+f(1)-1=f(n)+$\frac{2}{3}$,
即为an+1-an=$\frac{2}{3}$,且a1=$\frac{5}{3}$,
可得数列{an}为首项为$\frac{5}{3}$,公差为$\frac{2}{3}$的等差数列,
可得Sn=na1+$\frac{1}{2}$n(n-1)d=$\frac{5}{3}$n+$\frac{1}{2}$n(n-1)•$\frac{2}{3}$=$\frac{n(n+4)}{3}$.
故答案为:$\frac{n(n+4)}{3}$.

点评 本题考查数列的求和的求法,注意运用等差数列的求和公式,同时考查抽象函数的运用,注意运用赋值法的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网