题目内容
19.在平行四边形ABCD中AB=4,AD=3,P为边BC上的一点,$\overrightarrow{BP}+2\overrightarrow{CP}=\overrightarrow 0$,$\overrightarrow{AP}•\overrightarrow{DP}=20$,则$\overrightarrow{AB}•\overrightarrow{AD}$=18.分析 $\overrightarrow{BP}+2\overrightarrow{CP}=\overrightarrow 0$,可得$\overrightarrow{BP}=\frac{2}{3}\overrightarrow{BC}$,$\overrightarrow{PC}=\frac{1}{3}\overrightarrow{BC}$,代入$\overrightarrow{AP}•\overrightarrow{DP}=20$,$\overrightarrow{AB}=\overrightarrow{DC}$,$\overrightarrow{AD}=\overrightarrow{BC}$.化简即可得出.
解答 解:∵$\overrightarrow{BP}+2\overrightarrow{CP}=\overrightarrow 0$,∴$\overrightarrow{BP}=\frac{2}{3}\overrightarrow{BC}$,$\overrightarrow{PC}=\frac{1}{3}\overrightarrow{BC}$,
∵$\overrightarrow{AP}•\overrightarrow{DP}=20$,$\overrightarrow{AB}=\overrightarrow{DC}$,$\overrightarrow{AD}=\overrightarrow{BC}$.
∴20=$\overrightarrow{AP}•\overrightarrow{DP}$=$(\overrightarrow{AB}+\overrightarrow{BP})$•$(\overrightarrow{DC}+\overrightarrow{CP})$=$(\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD})$•$(\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD})$=${\overrightarrow{AB}}^{2}+\frac{1}{3}\overrightarrow{AB}•\overrightarrow{AD}$-$\frac{2}{9}{\overrightarrow{AD}}^{2}$=16+$\frac{1}{3}\overrightarrow{AB}•\overrightarrow{AD}$-$\frac{2}{9}×{3}^{2}$,
解得$\overrightarrow{AB}•\overrightarrow{AD}$=18.
故答案为:18.
点评 本题考查了向量共线定理、三角形法则、数量积运算性质,考查了推理能力与计算能力,属于中档题.
| A. | 众数 | B. | 平均数 | C. | 标准差 | D. | 中位数 |
| A. | (-∞,-4)∪(4,+∞) | B. | (-∞,-4)∪(-1,0) | C. | (-4,-1)∪(1,4) | D. | (-∞,-4)∪(-1,0)∪(1,4) |
| A. | (2,10) | B. | (2,10] | C. | [4,10] | D. | (4,10] |
| A. | x2+$\sqrt{2}$x<-1 | B. | x2+$\sqrt{x}$+1<0 | C. | x2+$\frac{3}{x}$+1<0 | D. | x+1<0 |