题目内容
若a>0,b>0,且a+b=2,则下列不等式恒成立的是( )
(A)>1 (B)+≤2
(C)≥1 (D)a2+b2≥2
D
设函数f(x)=则不等式f(x)>f(1)的解集是( )
(A)(-3,1)∪(3,+∞) (B)(-3,1)∪(2,+∞)
(C)(-1,1)∪(3,+∞) (D)(-∞,-3)∪(1,3)
如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.
(1)求p,t的值;
(2)求△ABP面积的最大值.
已知函数f(x)=4x+ (x>0,a>0)在x=3时取得最小值,则a= .
设0≤α≤π,不等式8x2-(8sin α)x+cos 2α≥0对x∈R恒成立,则α的取值范围为 .
设M是△ABC内一点,且·=2,∠BAC=30°,定义f(M)=(m,n,p),其中m、n、p分别是△MBC、△MCA、△MAB的面积,若f(M)=(,x,y),则+的最小值是 .
如图,☉O和☉O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连结DB并延长交☉O于点E.证明:
(1)AC·BD=AD·AB;
(2)AC=AE.
如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B两点,连接PA并延长,交圆O于点C,连接PB交圆O于点D,若MC=BC.
(1)求证:△APM∽△ABP;
(2)求证:四边形PMCD是平行四边形.
已知向量a=(sin θ,cos θ),b=(,1),其中θ∈(0, ).
(1)若a∥b,求sin θ和cos θ的值;
(2)若f(θ)=(a+b)2,求f(θ)的值域.