题目内容
2.已知一圆锥表面积为15πcm2,且它的侧面展开图是一个半圆,则圆锥的底面半径为$\sqrt{5}$cm.分析 设圆锥的底面圆的半径为r,母线长为l,利用侧面展开图是一个半圆,求得母线长与底面半径之间的关系,代入表面积公式求r.
解答 解:设圆锥的底面圆的半径为r,母线长为l,
∵侧面展开图是一个半圆,∴πl=2πr⇒l=2r,
∵圆锥的表面积为15π,∴πr2+πrl=3πr2=15π,∴r=$\sqrt{5}$,
故圆锥的底面半径为$\sqrt{5}$(cm).
故答案为:$\sqrt{5}$.
点评 本题考查圆锥的表面积公式及圆锥的侧面展开图,解题的关键是利用侧面展开图是一个半圆,求得母线长与底面半径之间的关系.
练习册系列答案
相关题目
7.$\overrightarrow{AB}$+$\overrightarrow{AC}$-$\overrightarrow{BC}$+$\overrightarrow{BA}$化简后等于( )
| A. | $\overrightarrow{AB}$ | B. | 3 $\overrightarrow{AB}$ | C. | $\overrightarrow{BA}$ | D. | $\overrightarrow{CA}$ |
10.
如图,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,图中圆弧所在圆的圆心为点C,半径为$\frac{1}{2}$,且点P在图中阴影部分(包括边界)运动.若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{BC}$,其中x,y∈R,则4x-y的取值范围是( )
| A. | $[2,\;\;3+\frac{{3\sqrt{2}}}{4}]$ | B. | $[2,\;\;3+\frac{{\sqrt{5}}}{2}]$ | ||
| C. | $[3-\;\;\frac{{\sqrt{2}}}{4},\;\;3+\frac{{\sqrt{5}}}{2}]$ | D. | $[3-\;\;\frac{{\sqrt{17}}}{2},\;\;3+\;\frac{{\sqrt{17}}}{2}]$ |