题目内容
如图,
是边长为3的正方形,
,
,
与平面
所成的角为
.![]()
(1)求二面角
的的余弦值;
(2)设点
是线段
上一动点,试确定
的位置,使得
,并证明你的结论.
(1)
;(2)三等分点
解析试题分析:(1)根据
平面
,确定
就是
与平面
所成的角,从而得到
,且
,可以建立空间直角坐标系,写出
,设出
的一个法向量为
,根据
,解出
,而平面
的法向量设为
,所以利用向量数量积公式得出二面角
的余弦值为
;(2)由题意设
,则
,而
平面
,∴
,代入坐标,求出
,所以点M的坐标为
,此时
,∴点M是线段BD靠近B点的三等分点.
试题解析:
平面
,
就是
与平面
所成的角,即
,∴
.
如图,分别以
为
轴,
轴,
轴建立空间直角坐标系
,则各点的坐标如下
,∴
,设平面
的一个法向量为
,则
,即
,令
,则
.
∵
平面
,∴平面
的法向量设为
,∴
,故二面角
的余弦值为
.![]()
(2)由题意,设
,则
,∵
平面
,∴
,即
解得
,∴点M的坐标为
,此时
,∴点M是线段BD靠近B点的三等分点.
考点:1.直线,平面位置关系的证明;2.利用空间向量求二面角.
练习册系列答案
相关题目