题目内容
3.在△ABC中,BC=$\sqrt{3}$,∠A=60°,则△ABC周长的最大值$3\sqrt{3}$.分析 由正弦定理可得:$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=$\frac{\sqrt{3}}{sin6{0}^{°}}$=2,因此△ABC周长=a+b+c=$\sqrt{3}$+2sinB+2sinC,=2sinB+2sin(120°-B)+$\sqrt{3}$,利用和差公式展开化简整理,再利用三角函数的单调性即可得出.
解答 解:在△ABC中,由正弦定理可得:$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{a}{sinA}$=$\frac{\sqrt{3}}{sin6{0}^{°}}$=2,
∴b=2sinB,c=2sinC,
∴△ABC周长=a+b+c=$\sqrt{3}$+2sinB+2sinC,
=2sinB+2sin(120°-B)+$\sqrt{3}$
=2sinB+2$(\frac{\sqrt{3}}{2}cosB+\frac{1}{2}sinB)$+$\sqrt{3}$
=3sinB+$\sqrt{3}$cosB+$\sqrt{3}$
=2$\sqrt{3}$$(\frac{\sqrt{3}}{2}sinB+\frac{1}{2}cosB)$+$\sqrt{3}$
=2$\sqrt{3}$sin(B+30°)+$\sqrt{3}$,
∵0°<B<120°,
∴B+30°∈(30°,150°),
∴sin(B+30°)∈$(\frac{1}{2},1]$.
∴△ABC周长≤3$\sqrt{3}$.
故答案为:3$\sqrt{3}$.
点评 本题考查了正弦定理、和差公式、三角函数求值,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
15.设函数f(x)=|$\frac{2}{x}$-ax-b|(a,b∈R),若对任意的正实数a和实数b,总存在x0∈[1,2],使得f(x0)≥m,则实数m的取值范围是( )
| A. | (-∞,0] | B. | (-∞,$\frac{1}{2}$] | C. | (-∞,1] | D. | (-∞,2] |