题目内容
2.将边长为2的正方形ABCD沿对角线BD折起,则三棱锥C-ABD的外接球表面积为( )| A. | 8π | B. | 12π | C. | 16π | D. | 4π |
分析 根据题意,画出图形,结合图形得出三棱锥C-ABD的外接球直径,从而求出外接球的表面积.
解答 解:将边长为2的正方形ABCD沿对角线BD折起,得到三棱锥C-ABD,
如图所示:![]()
则BC⊥CD,BA⊥AD,OA=OB=OC=OD,
三棱锥C-ABD的外接球直径为BD=2$\sqrt{2}$,
外接球的表面积为4πR2=(2$\sqrt{2}$)2π=8π.
故选:A.
点评 本题考查了平面图形的折叠问题,也考查了空间想象能力的应用问题,是基础题目.
练习册系列答案
相关题目
10.(1-$\frac{1}{x}$)(1+x)5的展开式中项x3的系数为( )
| A. | 7 | B. | 8 | C. | 10 | D. | 5 |