题目内容
12.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$则z=$\frac{y}{x-3}$的最小值等于( )| A. | -4 | B. | -2 | C. | -$\frac{1}{8}$ | D. | 0 |
分析 由约束条件作出可行域,再由z=$\frac{y}{x-3}$的几何意义,即可行域内的点与定点P(3,0)连线的斜率求解.
解答 解:由约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-2y+2=0}\\{x-y=0}\end{array}\right.$,解得A(2,2),
z=$\frac{y}{x-3}$的几何意义为可行域内的点与定点P(3,0)连线的斜率.
∵${k}_{PA}=\frac{2-0}{2-3}=-2$,
∴z=$\frac{y}{x-3}$的最小值等于-2.
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
3.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B,设|AF|=m,|BF|=n,则m+n的最小值为( )
| A. | 2 | B. | 3 | C. | $\sqrt{3}$ | D. | 4 |
7.2016-2017赛季中国男子篮球职业联赛(即CBA)正在如火如荼地进行,北京时间3月10日,CBA半决赛开打,新疆队对阵辽宁队,广东队对阵深圳队:某学校体育组为了调查本校学生对篮球运动是否感兴趣,对本校高一年级两个班共120名同学(其中男生70人,女生50人)进行调查,得到的统计数据如表
(1)完成下列2×2列联表丙判断能否在反错误的概率不超过0.05的前提下认为“对篮球运动是否感兴趣与性别有关”?
(2)采用分层抽样的方法从“对篮球运动不感兴趣”的学生里抽取一个6人的样本,其中男生和女生个多少人?从6人中随机选取3人做进一步的调查,求选取的3人中至少有1名女生的概率
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
| 对篮球运动不感兴趣 | 对篮球运动感兴趣 | 总计 | |
| 男生 | 20 | 50 | 70 |
| 女生 | 10 | 40 | 50 |
| 总计 | 30 | 90 | 120 |
(2)采用分层抽样的方法从“对篮球运动不感兴趣”的学生里抽取一个6人的样本,其中男生和女生个多少人?从6人中随机选取3人做进一步的调查,求选取的3人中至少有1名女生的概率
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |
19.不等式|x+3|≤0的解集为( )
| A. | ∅ | B. | {-3} | C. | (-∞,-3)∪(-3,+∞) | D. | R |