题目内容
已知数列{an}满足2an+1=an+an+2(n∈N+),其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,n∈N+,求Tn.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1b1+a2b2+…+anbn,n∈N+,求Tn.
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:(1)直接设出首项和公差,根据条件求出首项和公差,即可求出通项.
(2)借助于错位相减法求出Tn的表达式;
(2)借助于错位相减法求出Tn的表达式;
解答:
解:(1)由2an+1=an+an+2(n∈N+),知{an}为等差数列,设等差数列的公差为d,等比数列{bn}的公比为q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10,得方程组
,
解得
,
所以:an=3n-1,bn=2n.
(2)由(Ⅰ)知an•bn=(3n-1)•2n,
Tn=a1b1+a2b2+…+anbn,
则Tn=2×2+5×22+8×23+…+(3n-1)×2n,①;
2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1,②.
由①-②得,-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
-(3n-1)×2n+1-2
=-(3n-4)×2n+1-8.
所以Tn=(3n-4)×2n+1+8.
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由a4+b4=27,S4-b4=10,得方程组
|
解得
|
所以:an=3n-1,bn=2n.
(2)由(Ⅰ)知an•bn=(3n-1)•2n,
Tn=a1b1+a2b2+…+anbn,
则Tn=2×2+5×22+8×23+…+(3n-1)×2n,①;
2Tn=2×22+5×23+…+(3n-4)×2n+(3n-1)×2n+1,②.
由①-②得,-Tn=2×2+3×22+3×23+…+3×2n-(3n-1)×2n+1
=
| 6×(1-2n) |
| 1-2 |
=-(3n-4)×2n+1-8.
所以Tn=(3n-4)×2n+1+8.
点评:本题主要考查等差数列和等比数列的综合问题并考查计算能力.解决这类问题的关键在于熟练掌握基础知识,基本方法.
练习册系列答案
相关题目