ÌâÄ¿ÄÚÈÝ
¶¨Ò壺max{x£¬y}±íʾx¡¢yÁ½¸öÊýÖеÄ×î´óÖµ£¬min{x£¬y}±íʾx¡¢yÁ½¸öÊýÖеÄ×îСֵ£®¸ø³öÏÂÁÐ4¸öÃüÌ⣺
¢Ùmax{x1£¬x2}¡Ýa?x1¡ÝaÇÒx2¡Ýa£»
¢Úmax{x1£¬x2}¡Üa?x1¡ÜaÇÒx2¡Üa£»
¢ÛÉ躯Êýf£¨x£©ºÍg£¨x£©µÄ¹«¹²¶¨ÒåÓòΪD£¬Èôx¡ÊD£¬f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬Ôò[f£¨x£©]min¡Ý[g£¨x£©]max£»
¢ÜÈôº¯Êýf£¨x£©=min{|x|£¬|x+t|}µÄͼÏó¹ØÓÚÖ±Ïßx=-
¶Ô³Æ£¬ÔòtµÄֵΪ1£®
ÆäÖÐÕæÃüÌâÊÇ £®£¨Ð´³öËùÓÐÕæÃüÌâµÄÐòºÅ£©
¢Ùmax{x1£¬x2}¡Ýa?x1¡ÝaÇÒx2¡Ýa£»
¢Úmax{x1£¬x2}¡Üa?x1¡ÜaÇÒx2¡Üa£»
¢ÛÉ躯Êýf£¨x£©ºÍg£¨x£©µÄ¹«¹²¶¨ÒåÓòΪD£¬Èôx¡ÊD£¬f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬Ôò[f£¨x£©]min¡Ý[g£¨x£©]max£»
¢ÜÈôº¯Êýf£¨x£©=min{|x|£¬|x+t|}µÄͼÏó¹ØÓÚÖ±Ïßx=-
| 1 |
| 2 |
ÆäÖÐÕæÃüÌâÊÇ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺×ÛºÏÌâ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º¢Ù£¬ÓÉmax{x1£¬x2}¡Ýa?x1¡Ýa»òx2¡Ýa£¬¿ÉÅжϢ٣»
¢Ú£¬ÓÉmax{x1£¬x2}¡ÜaÖªx1¡ÜaÇÒx2¡Üa£¬¿ÉÅжϢڣ»
¢Û£¬ÒÀÌâÒ⣬Èôx¡ÊD£¬f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬Ôò[f£¨x£©]min¡Ý[g£¨x£©]max£¬¿ÉÅжϢۣ»
¢Ü£¬×÷³öº¯Êýf£¨x£©=min{|x|£¬|x+t|}¹ØÓÚÖ±Ïßx=-
¶Ô³ÆµÄͼÏ󣬿ÉÇóµÃtµÄÖµ£¬¿ÉÅжϢܣ®
¢Ú£¬ÓÉmax{x1£¬x2}¡ÜaÖªx1¡ÜaÇÒx2¡Üa£¬¿ÉÅжϢڣ»
¢Û£¬ÒÀÌâÒ⣬Èôx¡ÊD£¬f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬Ôò[f£¨x£©]min¡Ý[g£¨x£©]max£¬¿ÉÅжϢۣ»
¢Ü£¬×÷³öº¯Êýf£¨x£©=min{|x|£¬|x+t|}¹ØÓÚÖ±Ïßx=-
| 1 |
| 2 |
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬max{x1£¬x2}¡Ýa?x1¡Ýa»òx2¡Ýa£¬¹Ê¢Ù´íÎó£»
¶ÔÓÚ¢Ú£¬max{x1£¬x2}¡Üa?x1¡ÜaÇÒx2¡Üa£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬É躯Êýf£¨x£©ºÍg£¨x£©µÄ¹«¹²¶¨ÒåÓòΪD£¬Èôx¡ÊD£¬f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬Ôò[f£¨x£©]min¡Ý[g£¨x£©]max£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬Èôº¯Êýf£¨x£©=min{|x|£¬|x+t|}µÄͼÏó¹ØÓÚÖ±Ïßx=-
¶Ô³Æ£¬×÷ͼÈçÏ£º

ͼÏóÖеÄÓÒ±ßÊÇy=|x|£¬×ó±ßÊÇy=|x+t|£¬ÒòΪº¯Êýf£¨x£©=min{|x|£¬|x+t|}µÄͼÏó¹ØÓÚÖ±Ïßx=-
¶Ô³Æ£¬
ËùÒÔy=|x|Óëy=|x+t|µÄ½»µãºá×ø±êΪx=-
£¬Ò×ÖªABµÄÖеãºá×ø±êΪx=-
£¬
ËùÒÔA£¨-1£¬0£©£¬¹ÊÓУºt=1£¬¹Ê¢ÜÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
¶ÔÓÚ¢Ú£¬max{x1£¬x2}¡Üa?x1¡ÜaÇÒx2¡Üa£¬¹Ê¢ÚÕýÈ·£»
¶ÔÓÚ¢Û£¬É躯Êýf£¨x£©ºÍg£¨x£©µÄ¹«¹²¶¨ÒåÓòΪD£¬Èôx¡ÊD£¬f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬Ôò[f£¨x£©]min¡Ý[g£¨x£©]max£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬Èôº¯Êýf£¨x£©=min{|x|£¬|x+t|}µÄͼÏó¹ØÓÚÖ±Ïßx=-
| 1 |
| 2 |
ͼÏóÖеÄÓÒ±ßÊÇy=|x|£¬×ó±ßÊÇy=|x+t|£¬ÒòΪº¯Êýf£¨x£©=min{|x|£¬|x+t|}µÄͼÏó¹ØÓÚÖ±Ïßx=-
| 1 |
| 2 |
ËùÒÔy=|x|Óëy=|x+t|µÄ½»µãºá×ø±êΪx=-
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔA£¨-1£¬0£©£¬¹ÊÓУºt=1£¬¹Ê¢ÜÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ú¢Û¢Ü£®
µãÆÀ£º±¾Ì⿼²éº¯ÊýµÄ×îÖµÎÊÌ⣬×ÅÖØ¿¼²éºã³ÉÁ¢ÎÊÌâÓ뺯ÊýµÄ¶Ô³ÆÐÔ£¬×÷ͼÊǹؼü£¬Ò²ÊÇÄѵ㣬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
É輯ºÏM={x|
¡Ü0}£¬N={x|log2£¨x+1£©£¼2}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
| x+1 |
| x-2 |
| A¡¢£¨-1£¬2] |
| B¡¢[-1£¬2£© |
| C¡¢£¨-1£¬2£© |
| D¡¢[-1£¬2] |
ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬AB=2£¬EÊÇÀâCDµÄÖе㣬ÔòÈýÀâ×¶A1-BB1EµÄÌå»ýΪ£¨¡¡¡¡£©
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|