题目内容
已知{an}是斐波那契数列,满足a1=1,a2=1,an+2=an+1+an(n∈N*)•{an}中各项除以4所得余数按原顺序构成的数列记为{bn},则b2015=( )
| A、0 | B、1 | C、2 | D、3 |
考点:数列递推式
专题:等差数列与等比数列
分析:{an}是斐波那契数列,求得{an}中各项除以4所得余数组成以6为周期的周期数列,从而可得结论.
解答:
解:由题意,数列各项分别为:1,1,2,3,5,8,13,21,34,55,89,…,
各项除以4所得余数分别为:1,1,2,3,1,0,1,1,2,3,1,…,
即{an}中各项除以4所得余数组成以6为周期的周期数列
∴b2015=b6×335+5=b5=1.
故选B.
各项除以4所得余数分别为:1,1,2,3,1,0,1,1,2,3,1,…,
即{an}中各项除以4所得余数组成以6为周期的周期数列
∴b2015=b6×335+5=b5=1.
故选B.
点评:本题考查斐波那契数列,考查周期数列,考查学生分析解决问题的能力,确定数列为周期数列是关键.
练习册系列答案
相关题目
已知函数f(x)=
,(a>0,其中e为自然对数的底数),若关于x的方程f(f(x))=0,有且只有一个实数解,则实数a的取值范围为( )
|
| A、(1,+∞) |
| B、(1,2) |
| C、(0,1) |
| D、(0,1)∪(1,+∞) |
函数f(x)=-cosx在区间[a,b]上是减函数,且f(a)=
,f(b)=-
,则sin(
+
)的值为( )
| 1 |
| 3 |
| 1 |
| 3 |
| π |
| 2 |
| a+b |
| 2 |
| A、0 | ||||
B、-
| ||||
C、
| ||||
D、
|
设a,b是实数,则“a>b>1”是“a+
>b+
”的( )
| 1 |
| a |
| 1 |
| b |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分又不必要条件 |
i是虚数单位,则(
i-
)(-
+
i)=( )
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| A、1 | ||||||
B、-
| ||||||
C、
| ||||||
D、-
|
已知函数f(x)的定义域为[-1,5],f(3x-5)的定义域为( )
A、[
| ||||
| B、[-8,10] | ||||
C、[
| ||||
| D、[8,10] |