题目内容

1.已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}的前n项和,则$\frac{{2{S_n}+8}}{{{a_n}+3}}({n∈{N^*}})$的最小值为(  )
A.$\frac{5}{2}$B.$\frac{8}{3}$C.$2\sqrt{5}-2$D.3

分析 利用等差数列通项公式和等比数列性质,列出方程求出d=2,从而an=2n-1,${S_n}=\frac{n(1+2n-1)}{2}={n^2}$,进而得到$\frac{{2{S_n}+8}}{{{a_n}+3}}=\frac{{{n^2}+4}}{n+1}=(n+1)+\frac{5}{n+1}-2$,由此能求出结果.

解答 解:∵a1=1,a1,a3,a13成等比数列,
∴(1+2d)2=1+12d,
解得d=2或d=0(舍去),∴an=2n-1,
∴${S_n}=\frac{n(1+2n-1)}{2}={n^2}$,
∴$\frac{{2{S_n}+8}}{{{a_n}+3}}=\frac{{{n^2}+4}}{n+1}=(n+1)+\frac{5}{n+1}-2$,
n+1=2时原式取得最小值为$\frac{5}{2}$.
故选:A.

点评 本题考查等差数列中关于前n项和及第n项的代数式的最小值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网