题目内容

若二次函数f(x)的图象关于y轴对称,且1≤f(1)≤2,3≤f(2)≤4,求f(3)的范围.

解法一:设f(x)=ax2+c(a≠0).

f(3)=9a+c

=3f(2)-3f(1)+.

∵1≤f(1)≤2,3≤f(2)≤4,

∴5≤5f(1)≤10,24≤8f(2)≤32,

14≤8f(2)-5f(1)≤27.

≤9,

≤f(3)≤9.

解法二:设f(x)=ax2+c,f(1)=a+c,f(2)=4a+c,f(3)=9a+c.

令f(3)=mf(1)+nf(2),即9a+c=m(a+c)+n(4a+c).

解得m=-,n=.

∴f(3)=-f(1)+f(2).

而f(1)∈[1,2],

∴-f(1)∈[-,-];f(2)∈[3,4],∴f(2)∈[8,].

∴f(3)=-f(1)+f(2)∈[,9].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网