题目内容
已知函数f(n)=cos| nπ |
| 5 |
| f(1)+f(2)+…+f(2009) |
| f(11)+f(22)+f(33) |
分析:先通过诱导公式找到规律,f(1)+f(2)+f(3)+f(4)=(cos
+cos
)+(cos
+cos
)=-(cos
+cos
)+(cos
+cos
)=0然后再利用周期性求解.
| π |
| 5 |
| 2π |
| 5 |
| 3π |
| 5 |
| 4π |
| 5 |
| 3π |
| 5 |
| 4π |
| 5 |
| 3π |
| 5 |
| 4π |
| 5 |
解答:解:∵f(1)+f(2)+f(3)+f(4)=(cos
+cos
)+(cos
+cos
)=-(cos
+cos
)+(cos
+cos
)=0
∴[f(1)+f(2)+f(3)+…f(2009)]=(
)*0+cos
=cos(
+401π)=cos
=f(4)
[f(11)+f(22)+f(33)]=f(1)+f(2)+f(3)=0-f(4)=-f(4)
∴原式=-1
故答案为:-1
| π |
| 5 |
| 2π |
| 5 |
| 3π |
| 5 |
| 4π |
| 5 |
| 3π |
| 5 |
| 4π |
| 5 |
| 3π |
| 5 |
| 4π |
| 5 |
∴[f(1)+f(2)+f(3)+…f(2009)]=(
| 2009 |
| 4 |
| 2009π |
| 5 |
| 4π |
| 5 |
| 4π |
| 5 |
[f(11)+f(22)+f(33)]=f(1)+f(2)+f(3)=0-f(4)=-f(4)
∴原式=-1
故答案为:-1
点评:本题主要考查函数的规律的探索,学习三角函数关键是熟练应用相关公式,将问题进行转化.
练习册系列答案
相关题目