题目内容

已知函数f(n)=cos
5
(n∈N*)
,则
f(1)+f(2)+…+f(2009)
f(11)+f(22)+f(33)
=
 
分析:先通过诱导公式找到规律,f(1)+f(2)+f(3)+f(4)=(cos
π
5
+cos
5
)+(cos
5
+cos
5
)=-(cos
5
+cos
5
)+(cos
5
+cos
5
)=0然后再利用周期性求解.
解答:解:∵f(1)+f(2)+f(3)+f(4)=(cos
π
5
+cos
5
)+(cos
5
+cos
5
)=-(cos
5
+cos
5
)+(cos
5
+cos
5
)=0
∴[f(1)+f(2)+f(3)+…f(2009)]=(
2009
4
)*0+cos
2009π
5
=cos(
5
+401π)=cos
5
=f(4)
[f(11)+f(22)+f(33)]=f(1)+f(2)+f(3)=0-f(4)=-f(4)
∴原式=-1
故答案为:-1
点评:本题主要考查函数的规律的探索,学习三角函数关键是熟练应用相关公式,将问题进行转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网