题目内容
在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
)
(1)证明:(
)是等差数列
(2)设bn=
)n∈N*),求数列{bn}的前n项和Tn.
| 1 |
| 2 |
(1)证明:(
| 1 |
| Sn |
(2)设bn=
| Sn |
| 2n+1 |
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:(1)利用an=Sn-Sn-1(n≥2)将Sn2=an(Sn-
),转化为Sn2=(Sn-Sn-1)(Sn-
),得出
-
=2,利用定义证明{
}是等差数列
(2)由(1)得出bn=
=
=
(
-
),裂项后计算化简求和.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| Sn |
| 1 |
| Sn-1 |
| 1 |
| Sn |
(2)由(1)得出bn=
| Sn |
| 2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:
解:(1)证明:由Sn2=an(Sn-
),an=Sn-Sn-1(n≥2)
得Sn2=(Sn-Sn-1)(Sn-
)
即2SnSn-1=Sn-1-Sn
由题意知SnSn-1≠0,所以有
-
=2
所以(
)是以
=
=1为首项,公差为2的等差数列.
(2)由(1)可得
=1+2(n-1)=2n-1…所以Sn=
所以bn=
=
=
(
-
)
所以Tn=b1+b2+…+bn=
(1-
)+
(
-
)+…+
(
-
)=
(1-
)=
| 1 |
| 2 |
得Sn2=(Sn-Sn-1)(Sn-
| 1 |
| 2 |
即2SnSn-1=Sn-1-Sn
由题意知SnSn-1≠0,所以有
| 1 |
| Sn |
| 1 |
| Sn-1 |
所以(
| 1 |
| Sn |
| 1 |
| S1 |
| 1 |
| a1 |
(2)由(1)可得
| 1 |
| Sn |
| 1 |
| 2n-1 |
所以bn=
| Sn |
| 2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题考查数列的判定,通项公式,和的计算,考查转化构造,计算能力.本题中的数列求和法为裂项法.
练习册系列答案
相关题目
lg2+lg5的值是( )
| A、2 | B、5 | C、7 | D、1 |