题目内容
13.一个命题的四种形式的命题中真命题的个数可能取值是( )| A. | 0或2 | B. | 0或4 | C. | 2或4 | D. | 0或2 或4 |
分析 通过四种命题的关系和真假判断,即可判断
解答 解:一个命题与它的逆命题、否命题、逆否命题中,互为逆否命题的命题有2对,
根据互为逆否命题的两个命题真假性相同,∴这四个命题中真命题个数为0、2或4,
故选:A
点评 本题考查了本题主要考查四种命题及真假,属于基础题
练习册系列答案
相关题目
4.已知函数f(x)=x2+ax+sin$\frac{π}{2}$x(x∈(0,1))在定义域内单调递增,则a的取值范围是( )
| A. | [-$\frac{π}{2}$,+∞) | B. | (-∞,-$\frac{π}{2}$] | C. | (-∞,0] | D. | [0,+∞) |
1.如图是计算1$+\frac{1}{3}$$+\frac{1}{5}$$+…+\frac{1}{19}$的值的程序框图,则图中①、②处应填写的语句分别是( )

| A. | n=n+2,i>10? | B. | n=n+2,i≥10? | C. | n=n+1,i>10? | D. | n=n+1,i≥10? |
8.若lga+lgb=0,且a≠b,则函数f(x)=ax与g(x)=bx的图象( )
| A. | 关于x轴对称 | B. | 关于y轴对称 | C. | 关于原点对称 | D. | 关于直线y=x对称 |
18.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)与函数g(x)=k(x-k)+6的部分图象如图所示,直线y=A与g(x)图象相交于y轴,与f(x)相切于点N,向量$\overrightarrow{MN}$在x轴上投影的数量为-$\frac{3π}{4}$且A+ω=2k,则函数h(x)=sin(ωx-φ)+cos(ωx-φ)图象的一条对称轴的方程可以为( )
| A. | $\frac{11π}{-24}$ | B. | $\frac{11π}{24}$ | C. | $\frac{13π}{-24}$ | D. | $\frac{7π}{24}$ |
18.甲、乙两人约好一同去看《变形金刚5》,两人买完了电影票后,偶遇丙也来看这场电影,此时还剩9张该场电影的电影票,电影票的座位信息如表.
丙从这9张电影票中挑选了一张,甲、乙询问丙所选的电影票的座位信息.丙只将排数告诉了甲,只将号数告诉了乙.下面是甲、乙关于丙所选电影票的具体座位信息的一段对话:
甲对乙说:“我不能确定丙的座位信息,你肯定也不能确定.”
乙对甲说:“本来我不能确定,但是现在我能确定了.”
甲对乙说:“哦,那我也能确定了!”
根据上面甲、乙的对话,判断丙选择的电影票是( )
| 1排4号 | 1排5号 | 1排8号 |
| 2排4号 | ||
| 3排1号 | 3排5号 | |
| 4排1号 | 4排2号 | 4排8号 |
甲对乙说:“我不能确定丙的座位信息,你肯定也不能确定.”
乙对甲说:“本来我不能确定,但是现在我能确定了.”
甲对乙说:“哦,那我也能确定了!”
根据上面甲、乙的对话,判断丙选择的电影票是( )
| A. | 4排8号 | B. | 3排1号 | C. | 2排4号 | D. | 1排5号 |