题目内容
13.求实数m的取值范围,使关于x的方程x2-mx-m+3=0分别满足下列条件:(1)一根大于1,一根小于1;
(2)两根都小于5;
(3)一根在(0,1),一根在(1,2);
(4)两根都在[-4,0];
(5)一根小于0,一根大于2.
分析 (1)若一根大于1,一根小于1,则f(1)=1-2m+3<0,解得实数m的取值范围;
(2)两根都小于5,则$\left\{\begin{array}{l}△={m}^{2}+4m-12>0\\ \frac{m}{2}<5\\ f(5)=25-6m+3>0\end{array}\right.$,解得实数m的取值范围;
(3)一根在(0,1),一根在(1,2),则$\left\{\begin{array}{l}f(0)=-m+3>0\\ f(1)=1-2m+3<0\\ f(2)=4-3m+3>0\end{array}\right.$,解得实数m的取值范围;
(4)两根都在[-4,0],则$\left\{\begin{array}{l}△={m}^{2}+4m-12>0\\-4≤\frac{m}{2}≤0\\ f(-4)=16+3m+3>0\\ f(0)=-m+3>0\end{array}\right.$,解得实数m的取值范围;
(5)一根小于0,一根大于2,则$\left\{\begin{array}{l}f(2)=4-3m+3<0\\ f(0)=-m+3<0\end{array}\right.$,解得实数m的取值范围.
解答 解:令f(x)=x2-mx-m+3,则函数的图象是开口朝上的抛物线,
(1)若一根大于1,一根小于1,
则f(1)=1-2m+3<0,
解得:m>2;
(2)若两根都小于5,
则$\left\{\begin{array}{l}△={m}^{2}+4m-12>0\\ \frac{m}{2}<5\\ f(5)=25-6m+3>0\end{array}\right.$
解得:m<-6,或2$<m<\frac{14}{3}$;
(3)若一根在(0,1),一根在(1,2);
则$\left\{\begin{array}{l}f(0)=-m+3>0\\ f(1)=1-2m+3<0\\ f(2)=4-3m+3>0\end{array}\right.$,
解得:2<m<$\frac{7}{3}$,
(4)若两根都在[-4,0],
则$\left\{\begin{array}{l}△={m}^{2}+4m-12>0\\-4≤\frac{m}{2}≤0\\ f(-4)=16+3m+3>0\\ f(0)=-m+3>0\end{array}\right.$
解得:$-\frac{19}{3}<m<-6$;
(5)一根小于0,一根大于2,
则$\left\{\begin{array}{l}f(2)=4-3m+3<0\\ f(0)=-m+3<0\end{array}\right.$
解得:m>3.
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
| A. | $\frac{5}{4}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
| A. | 8 | B. | 9 | C. | 10 | D. | 11 |