题目内容
5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )| A. | f(x)g(x)是偶函数 | B. | |f(x)|g(x)是奇函数 | C. | f(-x)是奇函数 | D. | |g(x)|是奇函数 |
分析 由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.
解答 解:∵f(x)是奇函数,g(x)是偶函数,
∴f(-x)为奇函数,|f(x)|为偶函数,|g(x)|为偶函数.
再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,
可得 f(x)g(x)为奇函数,|f(x)|g(x)为奇函数,
故选:C.
点评 本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.
练习册系列答案
相关题目
20.若0<x<y<1,则下列不等式成立的是( )
| A. | ($\frac{1}{2}$)x<($\frac{1}{2}$)y | B. | x${\;}^{-\frac{1}{3}}$<y${\;}^{-\frac{1}{3}}$ | C. | logx$\frac{1}{2}$<logy$\frac{1}{2}$ | D. | logx3<logy3 |