题目内容
数列{an} (n∈N*)为递减的等比数列,且a1和a3为方程logm(5x-4x2)=0(m>0且m≠1)的两个根.
(1)求数列{an}的通项公式;
(2)记bn=
,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式;
(2)记bn=
| -1 |
| (2n+1)log2a2n |
(1)方程logm(5x-4x2)=0(m>0且m≠1)即 5x-4x2=1,即4x2-5x+1=0.
利用韦达定理可得a1 +a3=
,a1 •a3=
.再由数列{an} (n∈N*)为递减的等比数列可得a1 =1,a3=
,故公比为
.
∴an=
.
(2)∵bn=
=
=
=
(
-
).
∴数列{bn}的前n项和Sn=
[(1-
)+(
-
)+(
-
)+…+(
-
)=
(1-
)=
.
利用韦达定理可得a1 +a3=
| 5 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
∴an=
| 1 |
| 2n-1 |
(2)∵bn=
| -1 |
| (2n+1)log2a2n |
| -1 |
| (2n+1)(1-2n) |
| 1 |
| (2n+1)(2n-1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{bn}的前n项和Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
练习册系列答案
相关题目