ÌâÄ¿ÄÚÈÝ
17£®Ä³¹«Ë¾µÄÑз¢ÍŶӣ¬¿ÉÒÔ½øÐÐA¡¢B¡¢CÈýÖÖвúÆ·µÄÑз¢£¬Ñз¢³É¹¦µÄ¸ÅÂÊ·Ö±ðΪP£¨A£©=$\frac{4}{5}$£¬P£¨B£©=$\frac{2}{3}$£¬P£¨C£©=$\frac{1}{2}$£¬Èý¸ö²úÆ·µÄÑз¢Ï໥¶ÀÁ¢£®£¨1£©Çó¸Ã¹«Ë¾Ç¡ÓÐÁ½¸ö²úÆ·Ñз¢³É¹¦µÄ¸ÅÂÊ£»
£¨2£©ÒÑÖªA¡¢B¡¢CÈýÖÖ²úÆ·Ñз¢³É¹¦ºó´øÀ´µÄ²úÆ·ÊÕÒæ£¨µ¥Î»£ºÍòÔª£©·Ö±ðΪ1000¡¢2000¡¢1100£¬ÎªÁËÊÕÒæ×î´ó»¯£¬¹«Ë¾´ÓÖÐÑ¡ÔñÁ½¸ö²úÆ·Ñз¢£¬ÇëÄã´ÓÊýѧÆÚÍûµÄ½Ç¶ÈÀ´¿¼ÂÇÓ¦¸ÃÑз¢ÄÄÁ½¸ö²úÆ·£¿
·ÖÎö £¨1£©ÉèA£¬B£¬CÑз¢³É¹¦·Ö±ð¼ÇΪʼþA£¬B£¬C£¬ÇÒÏ໥¶ÀÁ¢£»¼ÆËãÇ¡ÓÐÁ½¸ö²úÆ·Ñз¢³É¹¦µÄ¸ÅÂʼ´¿É£»
£¨2£©Ñ¡ÔñA¡¢BºÍA¡¢C£¬B¡¢C¶ÔÓ¦µÄÁ½ÖÖ²úÆ·Ñз¢µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬±È½ÏµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÉèA£¬B£¬CÑз¢³É¹¦·Ö±ð¼ÇΪʼþA£¬B£¬C£¬ÇÒÏ໥¶ÀÁ¢£»
¼ÇʼþÇ¡ÓÐÁ½¸ö²úÆ·Ñз¢³É¹¦ÎªD£¬
ÔòP£¨D£©=P£¨A£©•P£¨B£©•P£¨$\overline{C}$£©+P£¨A£©•P£¨C£©•$P£¨\overline{B}£©$+P£¨B£©•P£¨C£©•P£¨$\overline{A}$£©
=$\frac{4}{5}$¡Á$\frac{2}{3}$¡Á$\frac{1}{2}$+$\frac{4}{5}$¡Á$\frac{1}{2}$¡Á$\frac{1}{3}$+$\frac{2}{3}$¡Á$\frac{1}{2}$¡Á$\frac{1}{5}$
=$\frac{7}{15}$£»
£¨II£©Ñ¡ÔñA¡¢BÁ½ÖÖ²úÆ·Ñз¢Ê±ÎªËæ»úʼþX£¬ÔòXµÄ¿ÉÄÜȡֵΪ0£¬1000£¬2000£¬3000£¬
ÔòP£¨X=0£©=P£¨$\overline{A}$£©•P£¨$\overline{B}$£©=$\frac{1}{5}$¡Á$\frac{1}{3}$=$\frac{1}{15}$£¬
P£¨X=1000£©=P£¨A£©•P£¨$\overline{B}$£©=$\frac{4}{5}$¡Á$\frac{1}{3}$=$\frac{4}{15}$£¬
P£¨X=2000£©=P£¨$\overline{A}$£©•P£¨B£©=$\frac{1}{5}$¡Á$\frac{2}{3}$=$\frac{2}{15}$£¬
P£¨X=3000£©=P£¨A£©•P£¨B£©=$\frac{4}{5}$¡Á$\frac{2}{3}$=$\frac{8}{15}$£¬
ÔòXµÄ·Ö²¼ÁÐΪ£»
| X | 0 | 1000 | 2000 | 3000 |
| P | $\frac{1}{15}$ | $\frac{4}{15}$ | $\frac{2}{15}$ | $\frac{8}{15}$ |
Ñ¡ÔñA¡¢CÁ½ÖÖ²úÆ·Ñз¢Ê±ÎªËæ»úʼþY£¬ÔòYµÄ¿ÉÄÜȡֵΪ0£¬1000£¬1100£¬2100£¬
ÔòP£¨Y=0£©=P£¨$\overline{A}$£©•P£¨$\overline{C}$£©=$\frac{1}{5}$¡Á$\frac{1}{2}$=$\frac{1}{10}$£¬
P£¨Y=1000£©=P£¨A£©•P£¨$\overline{C}$£©=$\frac{4}{5}$¡Á$\frac{1}{2}$=$\frac{4}{10}$£¬
P£¨X=1100£©=P£¨$\overline{A}$£©•P£¨C£©=$\frac{1}{5}$¡Á$\frac{1}{2}$=$\frac{1}{10}$£¬
P£¨X=2100£©=P£¨A£©•P£¨C£©=$\frac{4}{5}$¡Á$\frac{1}{2}$=$\frac{4}{10}$£¬
ÔòYµÄ·Ö²¼ÁÐΪ£»
| Y | 0 | 1000 | 1100 | 2100 |
| P | $\frac{1}{10}$ | $\frac{4}{10}$ | $\frac{1}{10}$ | $\frac{4}{10}$ |
Ñ¡ÔñA¡¢BÁ½ÖÖ²úÆ·Ñз¢Ê±ÎªËæ»úʼþZ£¬ÔòZµÄ¿ÉÄÜȡֵΪ0£¬2000£¬1100£¬3100£¬
ÔòP£¨Z=0£©=P£¨$\overline{B}$£©•P£¨$\overline{C}$£©=$\frac{1}{3}$¡Á$\frac{1}{2}$=$\frac{1}{6}$£¬
P£¨Z=2000£©=P£¨B£©•P£¨$\overline{C}$£©=$\frac{2}{3}$¡Á$\frac{1}{2}$=$\frac{2}{6}$£¬
P£¨X=1100£©=P£¨$\overline{B}$£©•P£¨C£©=$\frac{1}{3}$¡Á$\frac{1}{2}$=$\frac{1}{6}$£¬
P£¨X=3100£©=P£¨B£©•P£¨C£©=$\frac{2}{3}$¡Á$\frac{1}{2}$=$\frac{2}{6}$£¬
ÔòZµÄ·Ö²¼ÁÐΪ£»
| Z | 0 | 2000 | 1100 | 3100 |
| P | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{1}{6}$ | $\frac{2}{6}$ |
±È½ÏÖªE£¨Z£©×î´ó£¬¼´Ñз¢B¡¢CÁ½ÖÖ²úÆ·´øÀ´µÄ²úÆ·ÊÕÒæ×î´ó£®
µãÆÀ ±¾Ì⿼²éÁËËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÆäÊýѧÆÚÍû¡¢Ï໥¶ÀÁ¢Ê¼þµÄ¸ÅÂÊ¡¢Ï໥¶ÔÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ£¬ÊôÓÚÖеµÌ⣮
| A£® | cos2$\frac{¦Á}{2}$ | B£® | sin2$\frac{¦Á}{2}$ | C£® | cos2¦Á | D£® | sin2¦Á |
| A£® | 2 | B£® | 4 | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{4}$ |
| A£® | 1+2+22+¡+2k-2+2k-1=2k+1-1 | B£® | 1+2+22+¡+2k+2k+1=2k-1+2k+1 | ||
| C£® | 1+2+22+¡+2k-1+2k+1=2k+1-1 | D£® | 1+2+22+¡+2k-1+2k=2k+1-1 |