题目内容
已知sinα=
,α∈(0,
),tanβ=
.
(1)求tanα的值;
(2)求tan(α+2β)的值.
| ||
| 5 |
| π |
| 2 |
| 1 |
| 3 |
(1)求tanα的值;
(2)求tan(α+2β)的值.
(1)∵sinα=
,α∈(0,
),
∴cosα=
=
=
.
∴tanα=
=
=
.
(2)∵tanβ=
,
∴tan2β=
=
=
.
∴tan(α+2β)=
=
=2.
| ||
| 5 |
| π |
| 2 |
∴cosα=
| 1-sin2α |
1-
|
2
| ||
| 5 |
∴tanα=
| sinα |
| cosα |
| ||||
|
| 1 |
| 2 |
(2)∵tanβ=
| 1 |
| 3 |
∴tan2β=
| 2tanβ |
| 1-tan2β |
2×
| ||
1-(
|
| 3 |
| 4 |
∴tan(α+2β)=
| tanα+tan2β |
| 1-tanαtan2β |
| ||||
1-
|
练习册系列答案
相关题目