ÌâÄ¿ÄÚÈÝ
15£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Çó$\overrightarrow{TM}$•$\overrightarrow{TN}$µÄ×îСֵ£¬²¢Çó´ËʱԲTµÄ·½³Ì£®
·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ¶¥µã×ø±ê£¬½áºÏa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèM£¨m£¬n£©£¬ÓɶԳÆÐԿɵÃN£¨m£¬-n£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔÙÓÉÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬×ª»¯Îª¹ØÓÚmµÄ¶þ´Îº¯Êý£¬Åä·½£¬½áºÏÍÖÔ²µÄ·¶Î§£¬¿ÉµÃ×îСֵ£¬½ø¶øµÃµ½MµÄ×ø±ê£¬¿ÉµÃÔ²µÄ·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ÍÖÔ²µÄ×ó¶¥µãT£¨-2£¬0£©£¬
¿ÉµÃa=2£¬c=$\sqrt{3}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©ÉèM£¨m£¬n£©£¬ÓɶԳÆÐԿɵÃN£¨m£¬-n£©£¬
¼´ÓÐ$\frac{{m}^{2}}{4}$+n2=1£¬
Ôò$\overrightarrow{TM}$•$\overrightarrow{TN}$=£¨m+2£¬n£©•£¨m+2£¬-n£©=£¨m+2£©2-n2=£¨m+2£©2-1+$\frac{{m}^{2}}{4}$=$\frac{5}{4}$m2+4m+3
=$\frac{5}{4}$£¨m+$\frac{8}{5}$£©2-$\frac{1}{5}$£¬
ÓÉ-2¡Üm¡Ü2£¬¿ÉµÃm=-$\frac{8}{5}$ʱ£¬$\overrightarrow{TM}$•$\overrightarrow{TN}$µÄ×îСֵΪ-$\frac{1}{5}$£¬
´Ëʱn2=$\frac{9}{25}$£¬
¼´ÓÐr2=£¨m+2£©2+n2=$\frac{13}{25}$£¬
¿ÉµÃÔ²TµÄ·½³Ì£¨x+2£©2+y2=$\frac{13}{25}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬¿¼²éÏòÁ¿ÊýÁ¿»ýµÄ×îСֵ£¬×¢ÒâÔËÓöþ´Îº¯ÊýµÄ×îÖµÇ󷨺ÍÍÖÔ²µÄÐÔÖÊ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | £¨-3£¬+¡Þ£© | B£® | £¨-¡Þ£¬-3£© | C£® | £¨3£¬+¡Þ£© | D£® | £¨-¡Þ£¬3£© |
| A£® | $\frac{2¦Ð}{3}$ | B£® | $\frac{4¦Ð}{3}$ | C£® | 3¦Ð | D£® | 4¦Ð |