题目内容
11.已知函数f(x)=|2x+1|+|2x-3|.(1)若关于x的不等式f(x)<|1-2a|的解集不是空集,求实数a的取值范围;
(2)若关于t的一元二次方程t2+2$\sqrt{6}$t+f(m)=0有实根,求实数m的取值范围.
分析 (1)由绝对值不等式知f(x)=|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,从而可得|1-2a|>4,从而解得;
(2)由题意知△=24-4(|2m+1|+|2m-3|)≥0,从而可得|2m+1|+|2m-3|≤6,再分类讨论去绝对值号,从而解得.
解答 解:(1)∵f(x)=|2x+1|+|2x-3|≥|(2x+1)-(2x-3)|=4,
∴|1-2a|>4,
∴a<-$\frac{3}{2}$或a>$\frac{5}{2}$,
∴实数a的取值范围为(-∞,-$\frac{3}{2}$)∪($\frac{5}{2}$,+∞).
(2)由题意知,
△=24-4(|2m+1|+|2m-3|)≥0,
即|2m+1|+|2m-3|≤6,
即$\left\{\begin{array}{l}{m≤-\frac{1}{2}}\\{-2m-1-2m+3≤6}\end{array}\right.$或$\left\{\begin{array}{l}{-\frac{1}{2}<m<\frac{3}{2}}\\{2m+1-2m+3≤6}\end{array}\right.$或$\left\{\begin{array}{l}{m≥\frac{3}{2}}\\{2m+1+2m-3≤6}\end{array}\right.$,
解得,-1≤m≤2;
故实数m的取值范围是[-1,2].
点评 本题考查了绝对值函数的应用及绝对值不等式的解法,同时考查了分类讨论的思想应用.
练习册系列答案
相关题目
16.现有三所大学正在进行自主招生,甲,乙两位同学各自选报其中一所大学,每位同学选报各个大学的可能性相同,则这两位同学选报同一所大学的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
3.甲乙两俱乐部举行乒乓球团体对抗赛.双方约定:
①比赛采取五场三胜制(先赢三场的队伍获得胜利.比赛结束)
②双方各派出三名队员.前三场每位队员各比赛-场
已知甲俱乐部派出队员A1、A2.A3,其中A3只参加第三场比赛.另外两名队员A1、A2比赛场次未定:乙俱乐部派出队员B1、B2.B3,其中B1参加第一场与第五场比赛.B2参加第二场与第四场比赛.B3只参加第三场比赛
根据以往的比赛情况.甲俱乐部三名队员对阵乙俱乐部三名队员获胜的概率如表:
(I)若甲俱乐部计划以3:0取胜.则应如何安排A1、A2两名队员的出场顺序.使得取胜的概率最大?
(Ⅱ)若A1参加第一场与第四场比赛,A2参加第二场与第五场比赛,各队员每场比赛的结果互不影响,设本次团体对抗赛比赛的场数为随机变量X,求X的分布列及数学期望E(X)
①比赛采取五场三胜制(先赢三场的队伍获得胜利.比赛结束)
②双方各派出三名队员.前三场每位队员各比赛-场
已知甲俱乐部派出队员A1、A2.A3,其中A3只参加第三场比赛.另外两名队员A1、A2比赛场次未定:乙俱乐部派出队员B1、B2.B3,其中B1参加第一场与第五场比赛.B2参加第二场与第四场比赛.B3只参加第三场比赛
根据以往的比赛情况.甲俱乐部三名队员对阵乙俱乐部三名队员获胜的概率如表:
| A1 | A2 | A3 | |
| B1 | $\frac{5}{6}$ | $\frac{3}{4}$ | $\frac{1}{3}$ |
| B2 | $\frac{2}{3}$ | $\frac{2}{3}$ | $\frac{1}{2}$ |
| B3 | $\frac{6}{7}$ | $\frac{5}{6}$ | $\frac{2}{3}$ |
(Ⅱ)若A1参加第一场与第四场比赛,A2参加第二场与第五场比赛,各队员每场比赛的结果互不影响,设本次团体对抗赛比赛的场数为随机变量X,求X的分布列及数学期望E(X)
1.已知函数f(x)=tanx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),若f(x)≥1,则x的取值范围是( )
| A. | (-$\frac{π}{2}$,$\frac{π}{4}$) | B. | (-$\frac{π}{2}$,$\frac{π}{4}$] | C. | [$\frac{π}{4}$,$\frac{π}{2}$) | D. | ($\frac{π}{4}$,$\frac{π}{2}$) |