题目内容
若数列{an}的通项公式为an=(1+| 1 | n |
试证:(1)数列{an}为递增数列;
(2)2≤an≤3.
分析:(1)由题设条件知an=1+Cn1
+Cn2(
)2+…+Cnn(
)n,an+1=(1+
)n+1
=1+Cn+11
+Cn+12(
)2+…+Cn+1n(
)n+1.由此可知an<an+1,即{an}为递增数列.
(2)由题意知an=1+Cn1
+Cn2(
)2++Cnn(
)n≥1+Cn1
=2,由此可知an=1+Cn1
+Cn2(
)2++Cnn(
)n≤2+
+
+…+
=3-
<3.
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
=1+Cn+11
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+1 |
(2)由题意知an=1+Cn1
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
| 1 |
| n |
解答:证明:(1)an=(1+
)n=1+Cn1
+Cn2(
)2+…+Cnn(
)n,an+1=(1+
)n+1
=1+Cn+11
+Cn+12(
)2+…+Cn+1n(
)n+1.
可观察Cn+1k(
)k与Cnk(
)k,当k=0,1时,
Cn+1k(
)k=Cnk(
)k;当k=2,3,4,,n时,
Cn+1k(
)k>Cnk(
)k.∴an<an+1,即{an}为递增数列.
(2)∵an=(1+
)n
=1+Cn1
+Cn2(
)2++Cnn(
)n≥1+Cn1
=2,
又an=(1+
)n=1+Cn1
+Cn2(
)2++Cnn(
)n≤2+
+
+…+
=3-
<3.
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
=1+Cn+11
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+1 |
可观察Cn+1k(
| 1 |
| n+1 |
| 1 |
| n |
Cn+1k(
| 1 |
| n+1 |
| 1 |
| n |
Cn+1k(
| 1 |
| n+1 |
| 1 |
| n |
(2)∵an=(1+
| 1 |
| n |
=1+Cn1
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
又an=(1+
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
| 1 |
| n |
点评:解:本题考查数列的综合应用,解题时要注意公式的灵活运用.
练习册系列答案
相关题目