题目内容
【题目】已知函数
,关于
的不等式
只有1个整数解,则实数
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】D
【解析】由
得
。
∴当
时,
单调递增;当
时,
单调递减。
∴当
时,
有最大值,且
,
且x→+∞时,f(x)→0;x→0时,x→∞;f(1)=0。
故在(0,1)上,
,在(1,+∞)上,
,
作出函数f(x)的图象如下:
![]()
①当
时,由
得
,解集为(0,1)∪(1,+∞),
所以不等式的整数解有无数多个,不合题意;
②当
时,由
得
或
。
当
时,解集为(1,+∞),有无数个整数解;
当
时,解集为(0,1)的子集,不含有整数解。
故
不合题意。
③当
时,由
得
或
,
当
时,解集为(0,1),不含有整数解;
当
时,由条件知只有一个整数解。
∵
在
上单调递增,在
上单调递减,
而
,
∴满足条件的整数解只能为3,
∴
,
∴
。
综上,选D。
练习册系列答案
相关题目