题目内容

若[x]表示不超过x的最大整数(如[1.3]=1,[-2
1
4
]=-3等等),则[
1
2-
1×2
]+[
1
3-
2×3
]+[
1
4-
3×4
]+…+[
1
2004-
2003×2004
]=
 
考点:函数的值
专题:函数的性质及应用
分析:
1
n-
n(n-1)
=
n+
n(n-1)
n
=1+
n(n-1)
n
,得[
1
n-
n(n-1)
]=1,由此能求出[
1
2-
1×2
]+[
1
3-
2×3
]+[
1
4-
3×4
]+…+[
1
2004-
2003×2004
]的值.
解答: 解:∵
1
n-
n(n-1)
=
n+
n(n-1)
n
=1+
n(n-1)
n

∴[
1
n-
n(n-1)
]=1,
∴[
1
2-
1×2
]+[
1
3-
2×3
]+[
1
4-
3×4
]+…+[
1
2004-
2003×2004
]
=
1+1+…+1
2003个
=2003.
故答案为:2003.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意[
1
n-
n(n-1)
]=1的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网